bonyl compounds with TMSCN.12d,f,i,j Guanidine was also
successfully employed as a catalyst for this reaction.12h,k More
recently, certain amine N-oxides have been shown to be effective
catalysts for the cyanide addition to both aldeydes and ketones
using TMSCN as the cyanide source.12a-c,e,g In these reactions,
nucleophilic activation of TMSCN by amine N-oxides was
proposed as a key step in the catalytic cycle.12c During our
search for a new type of organocatalyst for this transformation,
we decided to investigate the possibility of using nucleophilic
N-heterocyclic carbenes to catalyze cyanosilylation of carbonyl
compounds with TMSCN.
TABLE 1. Cyanosilylation of Benzaldehyde and Acetophenone
% conversion
entry
R
solvent catalyst loading
time
(% isolated yield)
1
2
3
4
H
THF
THF
DMF
DMF
0.5 mol %
0.01 mol %
0.5 mol %
0.1 mol %
10 min
4 h
99 (91)
97 (83)
95 (80)
95 (74)
H
Me
Me
1 h
16 h
On the basis of our experience with NHC-catalyzed triflu-
oromethyl addition reactions with TMSCF3,9 we postulated that
the carbon-silicon bond in TMSCN could be activated by
NHCs for cyano transfer in an analogous fashion. Indeed, when
a THF solution of benzaldehyde and TMSCN was treated with
0.5 mol % of 1,3-di-tert-butylimidazol-2-ylidene (1, ItBu, Table
1) at room temperature, the cyanide addition occurred almost
instantaneously to give trimethylsilylated cyanohydrin 3a with
99% conversion in 10 min (entry 1). 1,3-Di-(1-adamantyl)-
imidazol-2-ylidene (IAd) was found to exhibit similar catalytic
activity. Both ItBu and IAd carbenes have good thermal
stability14 and can be easily handled in the laboratories. NHC-
catalyzed cyanide addition to benzaldehyde also proceeded
smoothly in a number of other solvents such as methylene
chloride, MTBE, and acetonitrile. The catalyst loading was
studied on a ∼100 mmol scale, and we were delighted to find
that only a minute amount of NHC 1 (0.01 mol %) was required
to catalyze the cyanation of benzaldehyde at room temperature
in THF (97% conversion within 4 h, entry 2).
An NHC-catalyzed reaction between acetophenone and
TMSCN is very sluggish in THF. Switching the reaction solvent
to DMF greatly accelerated the rate of the reaction, giving 95%
conversion within 1 h at room temperature in the presence of
0.5 mol % of the catalyst 1 (entry 3). When 0.1 mol % of NHC
1 was used in the cyanation of acetophenone in DMF, the same
conversion (95%) was achieved after 16 h at room temperature
(entry 4). It should be noted that in the absence of NHC (1) no
reaction occurs between benzaldehyde and TMSCN in THF or
between acetophenone and TMSCN in DMF after 17 h at room
temperature. The low catalyst loading that is needed for this
reaction underscores the extraordinary catalytic activity of NHCs
in activating silicon-based reagents such as TMSCN. In contrast,
for the previously reported organocatalysts, 5 mol % of phenolic
amine N-oxide (6 h at room temperature)12a or 30 mol % NMO
(8 h at room temperature)12b was employed to promote complete
conversion of acetophenone to the corresponding trimethylsi-
lylated cyanohydrin 3b.
The scope of this method was examined by using a number
of representative carbonyl compounds (Table 2). For these
preparative experiments, 0.5 mol % catalyst loading was used.
Benzaldehyde as well as enolizable aliphatic aldehydes (entries
1-3) underwent NHC-catalyzed cyanosilylation in excellent
yields. Cyanide addition to the sterically hindered pivalaldehyde
occurred rapidly at room temperature (entry 4).
Cyanosilylation reactions of ketones were carried out at room
temperature by using DMF as the solvent. R-Keto ester 2f was
subjected to the NHC-catalyzed cyanation reaction to afford
product 3f in 79% yield (entry 5). Acetophenone and p-
nitroacetophenone (entries 6-7) were smoothly converted into
the corresponding tertiary trimethylsilylated cyanohydrins under
NHC catalysis. Cyanation of cyclic and acyclic aliphatic ketones
(entries 8-9) was found to proceed efficiently. It is of particular
(11) Representative examples: (a) Moloney, M. G.; Yaqoob, M. Synlett
2004, 1631. (b) Bian, Z.-X.; Zhao, H.-Y.; Li, B.-G. Polyhedron 2003, 22,
1523. (c) Gassman, P. G.; Talley, J. J. Tetrahedron Lett. 1978, 19, 3773.
(d) Evans, D. A.; Carroll, G. L.; Truesdale, L. K. J. Org. Chem. 1974, 39,
914. (e) Bandili, M.; Cozzi, P. G.; Melchiiorre, P.; Achille, U.-R.
Tetrahedron Lett. 2001, 42, 3041. (f) Bandili, M.; Cozzi, P. G.; Garelli,
A.; Melchiorre, P.; Umani-Ronchi, A. Eur. J. Org. Chem. 2002, 3243. (g)
Lidy, W.; Sundermeyer, W. Chem. Ber. 1973, 106, 587. (h) Whitesell, J.
K.; Apodaca, R. Tetrahedron Lett. 1996, 37, 2525. (i) Jenner, G. Tetrahedron
Lett. 1999, 40, 491. (j) Matrubara, S.; Takai, T.; Utimoto, K. Chem. Lett.
1991, 1447. (k) Curini, M.; Epifanio, F.; Macrotullio, M. C.; Rosati, O.;
Rossi, M. Synlett 1999, 315. (l) Yang, Y.; Wang, D. Synlett 1997, 1379.
(m) Saravanan, P.; Anand, R. V.; Singh, V. K. Tetrahedron Lett. 1998, 39,
3823. (n) Noyori, R.; Murata, S.; Suzuki, M. Tetrahedron 1981, 38, 3899.
(o) Fujii, A.; Sakaguchi, S.; Ishii, Y. J. Org. Chem. 2000, 65, 6209. (p)
Karimi, B.; Ma′Mani, L. Org. Lett. 2004, 6, 4813. (q) Kaur, H.; Kaur, G.;
Trehan, S. Synth. Commun. 1996, 26, 1925. (r) Wilkinson, H. S.; Grover,
P. T.; Vandenbossche, C. P.; Bakale, R. P.; Bhongle, N. N.; Wald, S. A.;
Senanayake, C. H. Org. Lett. 2001, 3, 553. (s) Yadav, J. S.; Reddy, B. V.
S.; Reddy, M. S.; Prasad, A. R. Tetrahedron Lett. 2002, 43, 9703. (t) He,
B.; Li, Y.; Feng, X.; Zhang, G. Synlett 2004, 1776. (u) Liu, X.; Qin, B.;
Zhou, X.; He, B.; Feng, X. J. Am. Chem. Soc. 2005, 127, 12224. (v) Kurono,
N.; Yamaguchi, M.; Suzuki, K.; Ohkuma, T. J. Org. Chem. 2005, 70, 6530.
(w) Chen, F.; Feng, X.; Qin, B.; Zhang, G.; Jiang, Y. Org. Lett. 2003, 5,
949. For recent reviews, see: (x) Chen, F.-X.; Feng, X. Synlett 2005, 892.
(y) Kanai, M.; Kato, N.; Ichikawa, E.; Shibasaki, M. Synlett 2005, 1491.
(12) Organocatalysis using TMSCN as a cyanide source: (a) Li, Y.; He,
B.; Feng, X.; Zhang, G. Synlett 2004, 1598. (b) Kim, S. S.; Kim, D. W.;
Rajagopal, G. Synthesis 2004, 213. (c) Kim, S. S.; Rajagopal, G.; Kim, D.
W.; Song, D. H. Synth. Commun. 2004, 34, 2973. (d) Kruchok, I. S.; Gerus,
I. I.; Kukhar, V. P. Tetrahedron 2000, 56, 6533. (e) Zhou, H.; Chen, F.-X.;
Qin, B.; Feng, X. Synlett 2004, 1077. (f) Kobayashi, S.; Tsuchiya, Y.;
Mukaiyama, T. Chem. Lett. 1991, 537. (g) Wen, Y.; Huang, X.; Huang, J.;
Xiong, Y.; Qin, B.; Feng, X. Synlett 2005, 2445. (h) Ishikawa, T.; Isobe,
T. Chem.-Eur. J. 2002, 8, 552. (i) Fetterly, B. M.; Verkade, J. G.
Tetrahedron Lett. 2005, 46, 8061. (j) Baeza, A.; Na´jera, C.; Retamosa, Ma
de G.; Sansano, J. M. Synthesis 2005, 2787. (k) Kitani, Y.; Kumamoto, T.;
Isobe, T.; Fukuda, K.; Ishikawa, T. AdV. Synth. Catal. 2005, 347, 1653.
(13) Organocatalysis using methyl cyanoformate as the cyanide source:
(a) Poirier, D.; Berthiaume, D.; Boivin, R. P. Synlett 1999, 1423. (b)
Berthiaume, D.; Poirier, D. Tetrahedron 2000, 56, 5995. (c) Tian, S.-K.;
Deng, L. J. Am. Chem. Soc. 2001, 123, 6195. (d) Tian, S.-K.; Hong, R.;
Deng, L. J. Am. Chem. Soc. 2003, 125, 9900. (e) Iwanami, K.; Hinakubo,
Y.; Oriyama, T. Tetrahedron Lett. 2005, 5881. Organocatalysis using HCN
or in situ generated HCN as the cyanide source: (f) Danda, H. Bull. Chem.
Soc. Jpn. 1991, 64, 3743. (g) Hogg, D. J. P.; North, M. Tetrahedron 1993,
49, 1079. (h) Callant, D.; Coussens, B.; v. d. Meten, T.; de Vries, J. G.; de
Vries, N. K. Tetrahedron: Asymmetry 1992, 3, 401. (i) Fuerst, E. D.;
Jacobsen, N. E. J. Am. Chem. Soc. 2005, 127, 8964.
(14) (a) Arduengo, A. J., III; Harlow, R. L.; Kline, M. J. Am. Chem.
Soc. 1991, 113, 361. (b) Arduengo, A. J., III; Bock, H.; Chen, H.; Denk,
M.; Dixon, D. A.; Green, J. C.; Herrmann, W. A.; Jones, N. L.; Wagner,
M.; West, R. J. Am. Chem. Soc. 1994, 116, 6641. (c) Both ItBu and IAd
carbenes are commercially available from Strem Chemicals in Newburyport,
MA.
(15) Sasai, H.; Arai, S.; Shibasaki, M. J. Org. Chem. 1994, 59, 2661.
(16) Sukata, K. J. Org. Chem. 1989, 54, 2015.
(17) Ojima, I.; Inaba, S. Jpn. Kokai Tokkyo Koho 1978, JP 53034729
19780331.
(18) Masumoto, S.; Suzuki, M.; Kanai, M.; Shibasaki, M. Tetrahedron
2004, 60, 10497.
1274 J. Org. Chem., Vol. 71, No. 3, 2006