12788
J. Am. Chem. Soc. 1996, 118, 12788-12795
Dynamics within a Single Molecular Layer. Aggregation,
Relaxation, and the Absence of Motion
J. C. Horne and G. J. Blanchard*
Contribution from the Department of Chemistry, Michigan State UniVersity,
East Lansing, Michigan 48824
X
ReceiVed June 17, 1996
Abstract: We report on the transient and steady-state optical responses of the chromophore 2,2′-bithiophene-5,5′-
diylbis(phosphonic acid) (BDP) incorporated within a single zirconium-phosphonate layer as a function of chromophore
density. While the dilute solution optical response of BDP reveals no anomalous behavior, its characteristics are
substantially different when confined within a monolayer. We vary the concentrations of layer constituents to determine
the extent of interaction between BDP moieties within a single monolayer. We observe limited initial aggregation
of BDP, the extent of which is determined largely by the conditions under which the monolayer is formed. Over
time, the fractional contribution of BDP aggregates to the total optical response decreases to a limiting value, implicating
surface adsorption site density as the dominant factor in determining the morphology of the organobis(phosphonate)
layer. Motional relaxation measurements of BDP within the layer show that the chromophores are immobile on the
hundreds-of-picoseconds time scale of our experiments.
5-28
29-31
nonlinear optics,7,19,20
Phosphonic acids
Introduction
modification,2
electronic device,
3
2-37
and molecular recognition applications.
Organized molecular assemblies have found use in numerous
chemical and physical applications, such as device patterning,
nonlinear optics, and tribology.
materials have characteristically well-defined structures of
controlled composition and, with a small amount of material,
they offer a widely tunable range of chemical, electrical, and
optical properties. Metal-phosphonate (MP) organic multilayer
structures have been investigated extensively8 and, like other
self-assembling monolayers, show potential for use in surface
form strong, sparingly soluble complexes with metal ions, giving
them significant advantages over many self-assembled mono-
layer (SAM) systems, such as the thiol/gold SAMs, which have
been shown to be labile.
SAMs in ease of synthesis, which generally involves immersion
of the functionalized substrate into a solution of the appropriate
1-7
This class of interfacial
3
8-40
MP structures are comparable to
(
R,ω)-organobis(phosphonate). MP multilayers are versatile in
-24
a chemical sense because the identity of individual layers can
be controlled selectively as the structure is assembled and, in
this way, chemical or electrical potential, as well as optical
properties, can be built into the system in three dimensions rather
than two. Langmuir-Blodgett films can also be assembled as
*
Author to whom correspondence should be addressed.
Abstract published in AdVance ACS Abstracts, December 1, 1996.
X
(1) Bain, C. D.; Whitesides, G. M. Science 1988, 240, 62.
(2) Wilbur, J. L.; Biebuyck, H. A.; MacDonald, J. C.; Whitesides, G.
M. Langmuir 1995, 11, 825.
(
(
3) Drawhorn, R. A.; Abbott, N. L. J. Phys. Chem. 1995, 99, 16511.
4) Xia, Y.; Zhao, X.-M.; Kim, E.; Whitesides, G. M. Chem. Mater. 1995,
(21) Rong, D.; Hong, H.-G.; Kim, Y.-I.; Krueger, J. S.; Mayer, J. E.;
Mallouk, T. E. Coord. Chem. ReV. 1990, 97, 237.
(22) Lee, H.; Kepley, L. J.; Hong, H.-G.; Akhter, S.; Mallouk, T. E. J.
Phys. Chem. 1988, 92, 2597.
7
, 2332.
(5) Ford, J. F.; Vickers, T. M.; Mann, C. K.; Schlenoff, J. B. Langmuir
1
992, 12, 1944.
(
(23) Lee, H.; Kepley, L. J.; Hong, H.-G.; Mallouk, T. E. J. Am. Chem.
Soc. 1988, 110, 618.
(24) Katz, H. E. Chem. Mater. 1994, 6, 2227.
(25) Dubois, L. H.; Zegarski, B. R.; Nuzzo, R. G. J. Am. Chem. Soc.
1990, 112, 570.
6) Kim, E.; Whitesides, G. M.; Lee, L. K.; Smith, S. P.; Prentiss, M.
AdV. Mater. 1996, 8, 139.
7) Katz, H. E.; Wilson, W. L.; Scheller, G. J. Am. Chem. Soc. 1994,
16, 6636.
(
1
(
21.
8) Hong, H.-G.; Sackett, D. D.; Mallouk, T. E. Chem. Mater. 1991, 3,
(26) Chidsey, C. E. D.; Bertozzi, C. R.; Putvinski, T. M.; Mujsce, A.
M. J. Am. Chem. Soc. 1990, 112, 4301.
5
(
(
9) Thompson, M. E. Chem. Mater. 1994, 6, 1168.
10) Katz, H. E.; Wilson, W. L.; Scheller, G. J. Am. Chem. Soc. 1994,
(27) Collard, D. M.; Fox, M. A. Langmuir 1991, 7, 1192.
(28) Chidsey, C. E. D. Science 1991, 251, 919.
1
16, 6636.
11) Yonemoto, E. H.; Saupe, G. B.; Schmehl, R. H.; Hubig, S. M.;
Riley, R. L.; Iverson, B. L.; Mallouk, T. E. J. Am. Chem. Soc. 1994, 116,
786.
12) Katz, H. E.; Bent, S. F.; Wilson, W. L.; Schilling, M. L.; Ungashe,
S. B. J. Am. Chem. Soc. 1994, 116, 6631.
(29) Batchelder, D. N.; Evans, S. D.; Freeman, T. L.; Haussling, L.;
Ringsdorf, H.; Wolf, H. J. Am. Chem. Soc. 1994, 116, 1050.
(30) Tarlov, M. J.; Burgess, D. R. F.; Gillen, G. J. Am. Chem. Soc. 1993,
115, 5305.
(31) Wollman, E. W.; Kang, D.; Frisbie, C. D.; Lorkovic, I. M.; Wrighton,
M. S. J. Am. Chem. Soc. 1994, 116, 4395.
(
4
(
(
13) Frey, B. L.; Hanken, D. G.; Corn, R. M. Langmuir 1993, 9, 1815.
(32) Zak, J.; Yuan, H.; Ho, M.; Woo, L. K.; Porter, M. D. Langmuir
1993, 9, 2772.
(14) Yang, H. C.; Aoki, K.; Hong, H.-G.; Sackett, D. D.; Arendt, M. F.;
Yau, S.-L.; Bell, C. M.; Mallouk, T. E. J. Am. Chem. Soc. 1993, 115, 11855.
(33) Obeng, Y. S.; Laing, M. E.; Friedli, A. C.; Yang, H. C.; Wang, D.;
Thulstrup, E. W.; Bard, A. J.; Michl, J. J. Am. Chem. Soc. 1993, 114, 9943.
(34) Finklea, H. O.; Hanshew, D. D. J. Am. Chem. Soc. 1992, 114, 3173.
(35) Sun, L.; Crooks, R. M. Langmuir 1993, 9, 1775.
(36) Sun, L.; Kepley, L. J.; Crooks, R. M. Langmuir 1992, 8, 2101.
(37) Spinke, J.; Liley, M.; Schmitt, F.-J.; Guder, H.-J.; Angermaier, L.;
Knoll, W. J. Chem. Phys. 1993, 99, 7012.
(38) Karpovich, D. S.; Blanchard, G. J. Langmuir 1994, 10, 3313.
(39) Schessler, H. M.; Karpovich, D. S.; Blanchard, G. J. J. Am. Chem.
Soc. 1996, 118, 9645.
(
(
15) Vermeulen, L.; Thompson, M. E. Nature 1992, 358, 656.
16) Ungashe, S. B.; Wilson, W. L.; Katz, H. E.; Scheller, G. R.;
Putvinski, T. M. J. Am. Chem. Soc. 1992, 114, 8717.
17) Cao, G.; Rabenberg, L. K.; Nunn, C. M.; Mallouk, T. M. Chem.
Mater. 1991, 3, 149.
18) Katz, H. E.; Schilling, M. L.; Chidsey, C. E. D.; Putvinski, T. M.;
Hutton, R. S. Chem. Mater. 1991, 3, 699.
19) Katz, H. E.; Scheller, G.; Putvinski, T. M.; Schilling, M. L.; Wilson,
W. L.; Chidsey, C. E. D. Science 1991, 254, 1485.
20) Putvinski, T. M.; Schilling, M. L.; Katz, H. E.; Chidsey, C. E. D.;
Mujsce, A. M.; Emerson, A. B. Langmuir 1990, 6, 1567.
(
(
(
(
(40) McCarley, R. L.; Dunaway, D. J.; Willicut, R. J. Langmuir 1993,
9, 2775.
S0002-7863(96)02021-5 CCC: $12.00 © 1996 American Chemical Society