2728
N. Ahmed, J. E. van Lier / Tetrahedron Letters 47 (2006) 2725–2729
3. (a) Torii, S.; Okumoto, H.; HeXu, L. Tetrahedron Lett.
O
O
1991, 32, 237; (b) Hormi, O. E. O.; Peltonen, C.; Heikkila,
L. J. Org. Chem. 1990, 55, 2513.
4. (a) Donnelly, J. A.; Farrell, D. F. Tetrahedron 1990, 46,
885; (b) Donnelly, J. A.; Farrell, D. F. J. Org. Chem. 1990,
55, 1757; (c) Tokes, A. L.; Litkei, Gy. Synth. Commun.
1993, 23, 895, and references cited therein.
OH
O
3
4
5. (a) Tokes, A. L.; Szilagyi, L. Synth. Commun. 1987, 17,
1235; (b) Tokes, A. L.; Litkei, Gy.; Szilagyi, L. Synth.
Commun. 1992, 22, 2433.
6. (a) Kumar, K. H.; Muralidharan, D.; Perumal, P. T.
Synthesis 2004, 63; (b) Varma, R. S.; Saini, R. K. Synlett
1997, 857.
Scheme 2. Attempted cyclization of 3 to 4, using silica gel supported
TaBr5 under solvent-free conditions (3–4 min, 140–150 ꢁC), resulted in
substrate decomposition. Prolonged heating at lower temperature
(72 h, 60–70 ꢁC) gave 4 in 10–30% yield.
7. (a) Ahmed, N.; Ansari, W. H. J. Chem. Res. (S) 2003, 9,
572; (b) Ahmed, N.; Ali, H.; van Lier, J. E. Tetrahedron
Lett. 2005, 46, 253.
We also tried to cyclize 20-hydroxychalcones (3) to their
corresponding flavanones (4) using TaBr5 on silica gel
support under similar reaction conditions (Scheme 2).
8. (a) Shibata, I.; Nose, K.; Sakamoto, K.; Yasuda, M.;
Baba, A. J. Org. Chem. 2004, 69, 2185; (b) Shibata, I.;
Kano, T.; Kanazawa, N.; Fukuoka, S. Angew. Chem., Int.
Ed. 2002, 41, 1389; (c) Chandrasekhar, S.; Ramachandar,
T.; Shyamsunder, T. Indian J. Chem. 2004, 43B, 813; (d)
Kirihara, M.; Harano, A.; Tsukiji, H.; Takizawa, R.;
Uchiyama, T.; Hatano, A. Tetrahedron Lett. 2005, 46,
6377; (e) Chandrasekhar, S.; Prakash, S. J.; Jaga-
deshwar, V.; Narsihmulu, Ch. Tetrahedron Lett. 2001,
42, 5561.
The reaction gave a mixture of flavanone and flavone to-
gether with other unidentified products. However, the
same reaction mixture when kept at 60–70 ꢁC in dichlo-
romethane for 72 h gave 4 in 10–30% yields, depending
on the substituants present on the aromatic rings (Table
1). It has been reported that 20-hydroxychalcones 3 on
silica gel supported BiCl3 gave the corresponding flavo-
nones 4 in good yield at lower temperature (60–70 ꢁC).7a
Accordingly, TaBr5 on silica gel is less efficient for the
isomerization of 20-hydroxychalcones 3 as compared to
the cyclization of 20-aminochalcones 1. Presumably,
the mechanism of the latter reaction involves the heat-
facilitated intramolecular Michael addition6a of the ami-
no group to the a,b-unsaturated ketone, whereby the
essential configuration of both the TaBr5 catalyst and
the substrate is secured by their attachment to the silica
gel matrix.
9. Guo, Q.; Miyaji, T.; Hara, R.; Shen, B.; Takahashi, T.
Tetrahedron 2002, 58, 7327.
10. Howarth, J.; Gillespie, K. Tetrahedron Lett. 1996, 37,
6011.
11. General procedure: TaBr5 (5–10 mol %) was added to a
stirred solution of 20-aminochalcones13 (1.0 mmol) in
dichloromethane (1–1.5 mL) under argon and further
stirred for 10 min to complete dissolution. Then, dried
silica gel14 (200 mg) was added and solvent was evapo-
rated. The reaction mixture was heated with stirring for 3–
5 min at 140–150 ꢁC. After cooling, the silica gel was
extracted with diethyl ether, filtered and the solvent
evaporated in vacuo. Products were purified by silica gel
column chromatography using hexane–diethyl acetate (9:1
to 4:1) as eluent. (entry g). (2-(2,6-Dichlorophenyl)-2,3-
dihydroquinolin-4(1H)-one): yellow semi-solid; IR
(CHCl3): 3310 (NH), 1640 cmꢀ1 (C@O); 1H NMR
(CDCl3, 300 MHz): d 7.90 (dd, J = 9.6, 1.6 Hz, 1H),
7.45–7.10 (m, 4H), 6.79 (t, J = 8.0, 1.0 Hz, 1H), 6.68 (d,
J = 8.1 Hz, 1H), 5.78 (dd, J = 4.0, 12.2 Hz, 1H), 4.67 (br s,
1H, NH), 2.66 (dd, 12.2, 4.0 Hz, 2H); 13C NMR (CDCl3,
75.46 MHz): 193.0, 151.7, 138.4, 135.5, 132.8, 130.0, 129.4,
127.6, 127.5, 119.0, 118.6, 116.2, 54.2, 44.1; EIMS: m/z 371
In conclusion, we have shown that 2-aryl-2,3-dihydro-
quinolin-4(1H)-ones 2 can easily be prepared from 20-
aminochalcones 1 in high yield under solvent-free condi-
tion using commercially available tantalum salt and
silica gel. The advantages of this procedure over
earlier reported processes include simplicity, fast and
clean reactions, high yield, and the absence of organic
solvent.
(M+).
(2-(2,6-Dimethoxyphenyl)-2,3-dihydroquinolin-
Acknowledgements
4(1H)-one, entry h): yellow semi-solid; IR (CHCl3): 3280
1
(NH), 1630 cmꢀ1 (C@O); H NMR (CDCl3, 300 MHz): d
7.89 (dd, J = 9.4, 1.5 Hz, 1H), 7.69 (dd, J = 9.4, 1.5 Hz,
1H), 7.31–7.11 (m, 2H), 6.68–6.58 (m, 3H), 5.45 (dd,
J = 4.0, 12.6 Hz, 1H), 4.57 (br s, 1H, NH), 3.81 (s,
2 · OMe, 6H), 2.69 (dd, J = 4.0, 12.6 Hz, 2H); 13C NMR
(CDCl3, 75.46 MHz): 193.5, 152.0, 149.0, 148.6, 136.4,
134.5, 132.8, 128.0, 119.4, 118.64, 116.5, 113.0, 108.6, 56.8,
56.2, 54.2, 46.1; EIMS: m/z 383 (M+). (7-Bromo-2-(4-
nitrophenyl)-2,3-dihydroquinolin-4(1H)-one, entry k): yel-
low solid; mp >250 ꢁC; IR (CHCl3): 3210 (NH),
1628 cmꢀ1 (C@O); 1H NMR (CDCl3, 300 MHz): d 8.29
(dd, J = 9.7, 1.2 Hz, 2H), 7.98 (dd, J = 9.6, 1.2 Hz, 1H),
7.64–7.48 (m, 2H), 7.42 (dd, J = 9.6, 1.6 Hz, 1H), 6.88 (d,
J = 1.6 Hz, 1H), 4.88 (dd, J = 4.3, 12.9 Hz, 1H), 4.57 (br s,
1H, NH), 2.86 (dd, J = 4.3, 12.9 Hz, 2H); 13C NMR
(CDCl3, 75.46 MHz): 193.5, 152.7, 148.4, 145.5, 135.8,
133.4, 132.6, 131.5, 124.5, 122.0, 119.8, 118.6, 58.2, 48.1;
EIMS: m/z 347/345 (M+).
This work was supported by the Canadian Institutes of
Health Research (CIHR, grant MOP-44065).
References and notes
1. (a) Prakash, O.; Kumar, D.; Saini, R. K.; Singh, S. P.
Synth. Commun. 1994, 24, 2167; (b) Singh, O. V.; Kapil, R.
S. Synth. Commun. 1993, 23, 277.
2. (a) Kalinin, V. N.; Shostakovsky, M. V.; Ponomaryov, A.
B. Tetrahedron Lett. 1992, 33, 373; (b) Xia, Y.; Yang, Z.-
Y.; Xia, P.; Bastow, K. F.; Tachibana, Y.; Kuo, S.-C.;
Hamel, E.; Hackl, T.; Lee, K.-H. J. Med. Chem. 1998, 41,
1155; (c) Osawa, T.; Ohata, H.; Akimoto, K.; Harada, K.;
Soga, H.; Jinno, Y. Eur. Pat Appl. EP 343547; Chem.
Abstr. 1990, 112, 235197g.