Journal of the American Chemical Society
Communication
since their crystallographic densities are higher (SI section S5).
However, the observed surface area loss is greater than
expected. We hypothesize that, during the exchange, the imine
starting materials may undergo hydrolysis, resulting in the
formation of insoluble oligomers that may block the pores, or
alternatively, the linker may become trapped in the pores. In
spite of this, the oxazole material has a higher surface area than
that of any currently known oxazole COFs.
In order to probe our hypothesis regarding the irreversibility
of the azole linkages relative to the imine, chemical stability
tests were performed. The materials were submerged in basic
(10 M NaOH) and acidic (12.1 M HCl, 18 M H2SO4, 14.8 M
H3PO4, and 9 M H2SO4 in DMSO) solutions for 1 d, and
subsequently analyzed by PXRD and FT-IR (SI section S12).
Interestingly, all materials, even the imine-linked ILCOF-
1, proved stable in HCl. However, the PXRD patterns of
imine-linked ILCOF-1 treated with solutions containing
H2SO4 showed the emergence of a new phase. Furthermore,
the FT-IR spectra indicated that a large amount of imine
hydrolysis had occurred in the solutions of NaOH, H2SO4, and
H3PO4, as evidenced by the attenuation of the imine signal,
and growth of the aldehyde peak. In contrast, the azole
materials performed well in all conditions, where no changes in
the PXRD pattern, and only minimal changes in the FT-IR
spectra, were observed. This serves as strong evidence for the
increased irreversibility of the azole linkages and shows that
this technique is capable of producing chemically stable
materials.
(1144885). Y.S.F. is supported by the Gifted Student Program
Scholarship through the King Abdullah University of Science
and Technology. C.S.D. acknowledges funding through a Kavli
ENSI Philomathia Graduate Student Fellowship. The authors
thank Dr. Chenfei Zhao, Mary E. Garner and Robinson W.
Flaig for helpful discussions.
REFERENCES
■
̂
́
(1) Cote, A. P.; Benin, A. I.; Ockwig, N. W.; O’Keeffe, M.; Matzger,
A. J.; Yaghi, O. M. Science 2005, 310 (5751), 1166−1170.
́
̂
́
(2) El-Kaderi, H. M.; Hunt, J. R.; Mendoza-Cortes, J. L.; Cote, A. P.;
Taylor, R. E.; O’Keeffe, M.; Yaghi, O. M. Science 2007, 316 (5822),
268−272.
(3) Feng, X.; Ding, X.; Jiang, D. Chem. Soc. Rev. 2012, 41 (18),
6010−6022.
(4) Ding, S.-Y.; Wang, W. Chem. Soc. Rev. 2013, 42 (2), 548−568.
́
(5) Waller, P. J.; Gandara, F.; Yaghi, O. M. Acc. Chem. Res. 2015, 48
(12), 3053−3063.
(6) Diercks, C. S.; Yaghi, O. M. Science 2017, 355 (6328), eaal1585.
(7) Qian, C.; Qi, Q.-Y.; Jiang, G.-F.; Cui, F.-Z.; Tian, Y.; Zhao, X. J.
Am. Chem. Soc. 2017, 139 (19), 6736−6743.
(8) Zhang, G.; Tsujimoto, M.; Packwood, D.; Duong, N. T.;
Nishiyama, Y.; Kadota, K.; Kitagawa, S.; Horike, S. J. Am. Chem. Soc.
2018, 140 (7), 2602−2609.
(9) Huang, N.; Krishna, R.; Jiang, D. J. Am. Chem. Soc. 2015, 137
(22), 7079−7082.
(10) Ding, S.-Y.; Gao, J.; Wang, Q.; Zhang, Y.; Song, W.-G.; Su, C.-
Y.; Wang, W. J. Am. Chem. Soc. 2011, 133 (49), 19816−19822.
(11) Lohse, M. S.; Stassin, T.; Naudin, G.; Wuttke, S.; Ameloot, R.;
De Vos, D.; Medina, D. D.; Bein, T. Chem. Mater. 2016, 28 (2), 626−
631.
(12) Huang, N.; Chen, X.; Krishna, R.; Jiang, D. Angew. Chem., Int.
Ed. 2015, 54 (10), 2986−2990.
(13) Merí-Bofí, L.; Royuela, S.; Zamora, F.; Ruiz-Gonzalez, M. L.;
We demonstrated the utility of a method based on
substitution followed by oxidative cyclization in producing
new COFs of new linkages. This method is promising in
advancing COF chemistry from the usual reversible linkages to
more desirable and difficult to make linkages of limited
reversibility. The high crystallinity and porosity of these
materials are a testament to the value of this method, which
translates the quality of the imine precursor to more
irreversible chemistries.
Segura, J. L.; Mun
2017, 5 (34), 17973−17981.
oz-Olivas, R.; Mancheno, M. J. J. Mater. Chem. A
̃ ̃
(14) Sun, Q.; Aguila, B.; Perman, J.; Earl, L. D.; Abney, C. W.;
Cheng, Y.; Wei, H.; Nguyen, N.; Wojtas, L.; Ma, S. J. Am. Chem. Soc.
2017, 139 (7), 2786−2793.
(15) Kuhn, P.; Antonietti, M.; Thomas, A. Angew. Chem., Int. Ed.
2008, 47 (18), 3450−3453.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
̈
(16) Uribe-Romo, F. J.; Hunt, J. R.; Furukawa, H.; Klock, C.;
O’Keeffe, M.; Yaghi, O. M. J. Am. Chem. Soc. 2009, 131 (13), 4570−
4571.
(17) Jackson, K. T.; Reich, T. E.; El-Kaderi, H. M. Chem. Commun.
2012, 48 (70), 8823−8825.
(18) Guo, J.; Xu, Y.; Jin, S.; Chen, L.; Kaji, T.; Honsho, Y.; Addicoat,
M. A.; Kim, J.; Saeki, A.; Ihee, H.; Seki, S.; Irle, S.; Hiramoto, M.;
Gao, J.; Jiang, D. Nat. Commun. 2013, 4, 2736.
(19) Fang, Q.; Zhuang, Z.; Gu, S.; Kaspar, R. B.; Zheng, J.; Wang, J.;
Qiu, S.; Yan, Y. Nat. Commun. 2014, 5, 4503.
Methods and additional data (PDF)
AUTHOR INFORMATION
Corresponding Author
■
(20) Zhuang, X.; Zhao, W.; Zhang, F.; Cao, Y.; Liu, F.; Bi, S.; Feng,
X. Polym. Chem. 2016, 7 (25), 4176−4181.
ORCID
(21) Pyles, D. A.; Crowe, J. W.; Baldwin, L. A.; McGrier, P. L. ACS
Macro Lett. 2016, 5 (9), 1055−1058.
(22) Deblase, C. R.; Dichtel, W. R. Macromolecules 2016, 49 (15),
5297−5305.
Notes
(23) Jin, E.; Asada, M.; Xu, Q.; Dalapati, S.; Addicoat, M. A.; Brady,
M. A.; Xu, H.; Nakamura, T.; Heine, T.; Chen, Q.; Jiang, D. Science
2017, 357 (6352), 673−676.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
(24) Waller, P. J.; Lyle, S. J.; Osborn Popp, T. M.; Diercks, C. S.;
Reimer, J. A.; Yaghi, O. M. J. Am. Chem. Soc. 2016, 138 (48), 15519−
15522.
This work was supported by the Army Research Office through
a Multidisciplinary University Research Initiatives (MURI)
Award through Grant WG11NF-15-1-0047. P.J.W. additionally
thanks the NSF and the Berkeley Center for Green Chemistry
for support via the Systems Approach to Green Energy
Integrative Graduate Education and Research Traineeship
(25) Rabbani, M. G.; Sekizkardes, A. K.; Kahveci, Z.; Reich, T. E.;
Ding, R.; El-Kaderi, H. M. Chem. - Eur. J. 2013, 19 (10), 3324−3328.
(26) Lee, Y.-S.; Cho, Y.-H.; Lee, S.; Bin, J.-K.; Yang, J.; Chae, G.;
Cheon, C.-H. Tetrahedron 2015, 71 (4), 532−538.
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX