Table 1 Selected photophysical and electrochemical data of 10
a
a
em
b
c
d
1/2
d
e
c
l
onset
l
E
gap(opt)
E
gap(calcd)
E
E
onset
E
LUMO(CV)
E
LUMO(calcd)
4
88 nm
478 nm
2.5 eV
2.5 eV
ꢀ1.37 V
Estimated from absorption onset. Calculated B3LYP/6-31G* using Spartan 08. Measured from 0.1 M ODCB/TBAP
ꢀ1.13 V
ꢀ3.2 eV
ꢀ2.7 eV
a
b
c
d
Measured in CHCl
3
.
e
vs. Ag wire, potential window (+1.1 to ꢀ2.0 V). Estimated from EONSET according to ELUMO = ꢀ4.8 ꢀ e (EONSET ꢀ E1/2 Fc) eV where E1/2 Fc
.48 V.
=
0
ꢀ
1
in organic solvents (c20 mg mL in CHCl ), which facilitated
the Verband der Chemischen Industrie (SK 185/13). We thank Dr
3
the confirmation of its structure by NMR (see ESIz).
¨
M. Keller, Dr J. Worth and Dr J. Geier (U. Freiburg) for
assistance on NMR, MS and X-ray characterisation, respectively.
Taking advantage of the enhanced solubility of 10,
its electronic properties were investigated by steady-state
UV-Vis and fluorescence spectroscopy (Fig. 2). In non-polar
Notes and references
3
solvents such as toluene and CHCl , well-resolved absorption
1
M. M. Payne, S. R. Parkin and J. E. Anthony, J. Am. Chem. Soc.,
005, 127, 8028–8029.
D. Chun, Y. Cheng and F. Wudl, Angew. Chem., Int. Ed., 2008, 47,
380–8385.
features of 10 along the UV and the visible were observed,
with no sign of aggregation upon dilution. The optical
HOMO–LUMO gap of 10 (2.5 eV) was calculated from the
2
2
8
absorption spectrum onset of a CHCl
3
solution (Table 1). The
3 I. Kaur, N. N. Stein, R. P. Kopreski and G. P. Miller, J. Am.
Chem. Soc., 2009, 131, 3424–3425.
emission spectra of 10 were obtained by excitation with UV or
visible light. The spectra showed a peak centered at 478 nm
with a shoulder at 454 nm. Excitation spectra mirrored the
features observed on emission and Stokes shifts of 93 nm were
observed (see ESIz).
4
C. To
4
¨
nshoff and Holger F. Bettinger, Angew. Chem., Int. Ed., 2010,
9, 4125–4128.
I. Kaur, M. Jazdzyk, N. N. Stein, P. Prusevich and G. P. Miller,
J. Am. Chem. Soc., 2010, 132, 1261–1263.
5
6
7
U. H. F. Bunz, Chem.–Eur. J., 2009, 15, 6780–6789.
J. K. Stille and E. L. Mainen, J. Polym. Sci., Part B, 1966, 4,
Electrochemical properties of 10 were investigated by cyclic
voltammetry in a degassed solution of 1,2-dichlorobenzene
and tetrabutyl ammonium perchlorate (TBAP/ODCB)
6
8 J. K. Stille and E. L. Mainen, Macromolecules, 1968, 1, 36–42.
65–667.
9
K. Imai, M. Kuhihara, L. Mathias, J. Wittman, W. B. Alston and
J. K. Stille, Macromolecules, 1973, 6, 158–162.
(
Fig. 2). On the reduction scan, one reversible reduction wave
1
0 F. E. Arnold, J. Polym. Sci., Part B: Polym. Lett., 1969, 7,
49–753.
11 D. C. Lee, K. Jang, K. K. McGrath, R. Uy, K. A. Robins and
was observed with half-wave potential of E1/2 = ꢀ1.37 V. On
the oxidative scan, no waves were observed. The LUMO
energy (ꢀ3.2 eV) was estimated from the reduction onset of
the first reduction wave (Table 1).
7
D. W. Hatchett, Chem. Mater., 2008, 20, 3688–3695.
2 A. Mateo-Alonso, C. Ehli, K. H. Chen, D. M. Guldi and M. Prato,
1
J. Phys. Chem. A, 2007, 111, 12669–12673.
13 J. Hu, D. Zhang, S. Jin, S. Z. D. Cheng and F. W. Harris, Chem.
Mater., 2004, 16, 4912–4915.
A theoretical estimation of the HOMO–LUMO gaps in
vacuo (2.5 eV, B3LYP/6-31G*) is in good agreement with the
measured optical bandgaps (Table 1). The overestimation by
1
1
1
1
4 B. R. Kaafarani, L. A. Lucas, B. Wex and G. E. Jabbour, Tetra-
hedron Lett., 2007, 48, 5995–5998.
5 F. M. Jradi, M. H. Ai-Sayah and B. R. Kaafarani, Tetrahedron
Lett., 2008, 49, 238–242.
6 D. C. Lee, K. K. McGrath and K. Jang, Chem. Commun., 2008,
0
.5 eV of the calculated LUMO level (ꢀ2.7 eV) is reasonable
due to the lack of the solvent in the simulations. As expected
both HOMO and LUMO are delocalized along the azaacene
core of 10 (Fig. 2).
3
636–3638.
7 L. A. Lucas, D. M. DeLongchamp, L. J. Richter, R. J. Kline,
D. A. Fischer, B. R. Kaafarani and G. E. Jabbour, Chem. Mater.,
2008, 20, 5743–5749.
In summary we have developed a synthetic route to prepare
1
,3,6,8-tetraoctyl-4,5,9,10-tetraketopyrene, a new and key
1
1
2
2
8 K. K. McGrath, K. Jang, K. A. Robins and D.-C. Lee, Chem.–Eur. J.,
building block for the synthesis of soluble pyrene-fused
azaacenes. Indeed, by using this building block, we have
conveniently synthesised a pyrene-fused tetraazaoctacene
derivative with four n-octyl solubilising chains in the pyrene
core that displays enhanced solubility in neutral organic
2009, 15, 4070–4077.
9 K. Jang, J. M. Kinyanjui, D. W. Hatchett and D.-C. Lee, Chem.
Mater., 2009, 21, 2070–2076.
0 M. Luo, H. Shadnia, G. Qian, X. Du, D. Yu, D. Ma, James
S. Wright and Zhi Y. Wang, Chem.–Eur. J., 2009, 15, 8902–8908.
1 A. Mateo-Alonso, N. Kulisic, G. Valenti, M. Marcaccio,
F. Paolucci and M. Prato, Chem.–Asian J., 2010, 5, 482–485.
ꢀ
1
solvents (c20 mg ml ). Overall, this methodology opens
the door for preparing pyrene fused azaacenes with enhanced
solubility, facilitating their synthesis, characterisation, and the
establishment of their properties. The use of 1,3,6,8-tetraoctyl-
22 S. Leng, L. H. Chan, J. Jing, J. Hu, R. M. Moustafa, R. M.
V. Horn, M. J. Graham, B. Sun, M. Zhu, K.-U. Jeong,
B. R. Kaafarani, W. Zhang, F. W. Harris and S. Z. D. Cheng,
Soft Matter, 2010, 6, 100–112.
4
,5,9,10-tetraketopyrene to prepare higher azaacenes and
23 B. X. Gao, M. Wang, Y. X. Cheng, L. X. Wang, X. B. Jing and
F. S. Wang, J. Am. Chem. Soc., 2008, 130, 8297–8306.
polymers is currently underway and the results will be reported
in due course.
2
4 J. Hu, D. Zhang and F. W. Harris, J. Org. Chem., 2005, 70,
07–708.
5 G. Venkataramana and S. Sankararaman, Eur. J. Org. Chem.,
7
This work was carried out with support of the Freiburg Institute
for Advanced Studies (FRIAS Junior Research Fellowship) and
2
2005, 4162–4166.
5
16 Chem. Commun., 2011, 47, 514–516
This journal is c The Royal Society of Chemistry 2011