Page 7 of 8
Journal of the American Chemical Society
2
0. Zhang, S.-L.; Liu, L.; Fu, Y.; Guo, Q.-X., Theoretical Study on
40. Aikawa, K.; Nakamura, Y.; Yokota, Y.; Toya, W.; Mikami, K.,
Stable but reactive perfluoroalkylzinc reagents: application in ligand-
free copper-catalyzed perfluoroalkylation of aryl iodides. Chem. Eur.
J. 2015, 21, 96-100.
1
2
3
4
5
6
7
8
9
Copper(I)-Catalyzed Cross-Coupling between Aryl Halides and
Amides. Organometallics 2007, 26, 4546-4554.
2
1. Dubinina, G. G.; Ogikubo, J.; Vicic, D. A., Structure of
Bis(trifluoromethyl)cuprate and Its Role in Trifluoromethylation
Reactions. Organometallics 2008, 27, 6233-6235.
22. Tye, J. W.; Weng, Z.; Giri, R.; Hartwig, J. F., Copper(I)
phenoxide complexes in the etherification of aryl halides. Angew.
Chem. Int. Ed. Engl. 2010, 49, 2185-2189.
41. Lishchynskyi, A.; Novikov, M. A.; Martin, E.; Escudero-Adan,
E. C.; Novak, P.; Grushin, V. V., Trifluoromethylation of aryl and
heteroaryl halides with fluoroform-derived CuCF : scope, limitations,
3
and mechanistic features. J. Org. Chem. 2013, 78, 11126-11146.
42. Ohashi, M.; Ishida, N.; Ando, K.; Hashimoto, Y.; Shigaki, A.;
Kikushima, K.; Ogoshi, S., Cu(I) -Catalyzed Pentafluoroethylation of
Aryl Iodides in the Presence of Tetrafluoroethylene and Cesium
Fluoride: Determining the Route to the Key Pentafluoroethyl Cu(I)
Intermediate. Chem. Eur. J. 2018, 24, 9794-9798.
2
3. Yu, H.-Z.; Jiang, Y.-Y.; Fu, Y.; Liu, L., Alternative Mechanistic
Explanation for Ligand-Dependent Selectivities in Copper-Catalyzed
N- and O-Arylation Reactions. J. Am. Chem. Soc. 2010, 132, 18078-
18091.
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
2
4. Lefèvre, G.; Franc, G.; Tlili, A.; Adamo, C.; Taillefer, M.;
43. Lishchynskyi, A.; Grushin, V. V., Cupration of C
2
F
5
H: isolation,
)].
Ciofini, I.; Jutand, A., Contribution to the Mechanism of Copper-
Catalyzed C–N and C–O Bond Formation. Organometallics 2012, 31,
structure, and synthetic applications of [K(DMF) ][(t-BuO)Cu(C F
2
2 5
Highly efficient pentafluoroethylation of unactivated aryl bromides. J.
Am. Chem. Soc. 2013, 135, 12584-12587.
44. Hansch, C.; Leo, A.; Taft, R. W., A Survey of Hammett
Substituent Constants and Resonance and Field Parameters. Chem.
Rev. 1991, 91, 165-195.
7
694-7707.
25. Lefèvre, G.; Tlili, A.; Taillefer, M.; Adamo, C.; Ciofini, I.;
Jutand, A., Discriminating role of bases in diketonate copper(I)-
catalyzed C–O couplings: phenol versus diarylether. Dalton Trans.
2
013, 42, 5348-5354.
6. Konovalov, A. I.; Lishchynskyi, A.; Grushin, V. V., Mechanism
45. The Hammett σ
piperidinyl
p 2
value for N(n-propyl) was used for 1-
2
of trifluoromethylation of aryl halides with CuCF
3
and the ortho effect.
46. Strieter, E. R.; Bhayana, B.; Buchwald, S. L., Mechanistic
Studies on the Copper-Catalyzed N-Arylation of Amides. J. Am. Chem.
Soc. 2009, 131, 78-88.
J. Am. Chem. Soc. 2014, 136, 13410-13425.
2
7. Bhunia, S.; Pawar, G. G.; Kumar, S. V.; Jiang, Y.; Ma, D.,
Selected Copper-Based Reactions for C-N, C-O, C-S, and C-C Bond
Formation. Angew. Chem. Int. Ed. Engl. 2017, 56, 16136-16179.
28. Oishi, M.; Kondo, H.; Amii, H., Aromatic trifluoromethylation
catalytic in copper. Chem. Commun. 2009, 1909-1911.
47. Liu, H.; Shen, Q., Bistrifluoromethylated organocuprate
+
−
4 3 2
[Ph P] [Cu(CF ) ] : synthesis, characterization and its application for
trifluoromethylation of activated heteroaryl bromides, chlorides and
iodides. Org. Chem. Front. 2019, 6, 2324-2328.
48. Serizawa, H.; Aikawa, K.; Mikami, K., Direct synthesis of
pentafluoroethyl copper from pentafluoropropionate as an economical
C F source: application to pentafluoroethylation of arylboronic acids
2 5
and aryl bromides. Org. Lett. 2014, 16, 3456-3459.
49. Zanardi, A.; Novikov, M. A.; Martin, E.; Benet-Buchholz, J.;
Grushin, V. V., Direct cupration of fluoroform. J. Am. Chem. Soc.
2011, 133, 20901-20913.
50. The difference in ratios of 5d–e for 2a and 2e suggests that
ligand dissociation might be a minor pathway for 2a. This hypothesis
was further assessed by conducting the reaction of 2a with a mixture of
3d and 3e in the presence of 2 equiv of added bpy 1a to ensure ligation
2
9. Ouali, A.; Spindler, J. F.; Jutand, A.; Taillefer, M., Nitrogen
ligands in copper-catalyzed arylation of phenols: Structure/activity
relationships and applications. Adv. Synth. Catal. 2007, 349, 1906-
1
916.
30. Dubinina, G. G.; Furutachi, H.; Vicic, D. A., Active
trifluoromethylating agents from well-defined Copper(I)-CF
3
complexes. J. Am. Chem. Soc. 2008, 130, 8600-8601.
3
1. Tomashenko, O. A.; Escudero-Adan, E. C.; Belmonte, M. M.;
Grushin, V. V., Simple, stable, and easily accessible well-defined
CuCF aromatic trifluoromethylating agents. Angew. Chem. Int. Ed.
Engl. 2011, 50, 7655-7659.
2. Panferova, L. I.; Miloserdov, F. M.; Lishchynskyi, A.; Martinez
Belmonte, M.; Benet-Buchholz, J.; Grushin, V. V., Well-defined
CuC complexes and pentafluoroethylation of acid chlorides. Angew.
3
3
of any free CuC
(40:60 of 5d:5e) than the ratio without added bpy (44:56) suggesting
that the reaction of free CuC is an active but minor pathway. The
same reaction with 15 equiv of added bpy gave a 39:61 ratio of 5d:5e,
2 5
F . This reaction resulted in the slightly smaller ratio
2
F
5
2 5
F
Chem. Int. Ed. Engl. 2015, 54, 5218-5222.
33. Morimoto, H.; Tsubogo, T.; Litvinas, N. D.; Hartwig, J. F., A
broadly applicable copper reagent for trifluoromethylations and
perfluoroalkylations of aryl iodides and bromides. Angew. Chem. Int.
Ed. Engl. 2011, 50, 3793-3798.
2 5
indicating that the CuC F unit is fully ligated with 2 or more equiv of
bpy.
51. Chang, C. E.; Chen, W.; Gilson, M. K., Evaluating the Accuracy
of the Quasiharmonic Approximation. J. Chem. Theory Comput. 2005,
1, 1017-1028.
3
4. Litvinas, N. D.; Fier, P. S.; Hartwig, J. F., A general strategy for
the perfluoroalkylation of arenes and arylbromides by using
52. Reed, A. E.; Weinstock, R. B.; Weinhold, F., Natural population
analysis. J. Chem. Phys. 1985, 83, 735-746.
F
arylboronate esters and [(phen)CuR ]. Angew. Chem. Int. Ed. Engl.
III
2
012, 51, 536-539.
5. Weng, Z. Q.; Lee, R.; Jia, W. G.; Yuan, Y. F.; Wang, W. F.;
Feng, X.; Huang, K. W., Cooperative Effect of Silver in Copper-
53. Snyder, J. P., Elusiveness of Cu Complexation; Preference for
I
−
3
Trifluoromethyl Oxidation in the Formation of [Cu (CF
3
)
4
]
Salts.
Angew. Chem. Int. Ed. 1995, 34, 80-81.
Catalyzed Trifluoromethylation of Aryl Iodides Using Me
3
SiCF
3
.
54. Walroth, R. C.; Lukens, J. T.; MacMillan, S. N.; Finkelstein, K.
1
0
Organometallics 2011, 30, 3229-3232.
D.; Lancaster, K. M., Spectroscopic Evidence for a 3d Ground State
1
-
3
6. Kondo, H.; Oishi, M.; Fujikawa, K.; Amii, H., Copper-
3 4
Electronic Configuration and Ligand Field Inversion in [Cu(CF ) ] . J.
Catalyzed Aromatic Trifluoromethylation via Group Transfer from
Fluoral Derivatives. Adv. Synth. Catal. 2011, 353, 1247-1252.
Am. Chem. Soc. 2016, 138, 1922-1931.
55. Hoffmann, R.; Alvarez, S.; Mealli, C.; Falceto, A.; Cahill, T. J.,
3rd; Zeng, T.; Manca, G., From Widely Accepted Concepts in
Coordination Chemistry to Inverted Ligand Fields. Chem. Rev. 2016,
116, 8173-8192.
3
7. Knauber, T.; Arikan, F.; Roschenthaler, G. V.; Goossen, L. J.,
Copper-catalyzed trifluoromethylation of aryl iodides with potassium
trifluoromethyl)trimethoxyborate. Chem. Eur. J. 2011, 17, 2689-2697.
8. Nakamura, Y.; Fujiu, M.; Murase, T.; Itoh, Y.; Serizawa, H.;
(
3
56. Baya, M.; Joven-Sancho, D.; Alonso, P. J.; Orduna, J.; Menjón,
−
Aikawa, K.; Mikami, K., Cu-catalyzed trifluoromethylation of aryl
iodides with trifluoromethylzinc reagent prepared in situ from
trifluoromethyl iodide. Beilstein J. Org. Chem. 2013, 9, 2404-2409.
B., M−C Bond Homolysis in Coinage-Metal [M(CF
Angew. Chem. Int. Ed. Engl. 2019, 58, 9954-9958.
3
)
4
] Derivatives.
39. Chen,
Q.-Y.;
Wu,
S.-W.,
Methyl
fluorosulphonyldifluoroacetate; a new trifluoromethylating agent. J.
Chem. Soc., Chem. Commun. 1989, 705.
ACS Paragon Plus Environment