J. Am. Chem. Soc. 2000, 122, 4249-4250
4249
Design and Structural Analysis of the First Spherical
Monodendron Self-Organizable in a Cubic Lattice
Scheme 1. Self-assembly of Conical Monodendrons into
Supramolecular Spherical Dendrimers and the Subsequent
Self-Organization of the Supramolecular Dendrimers in a
Pm 3h n Cubic Lattice
,
†
†
‡
Virgil Percec,* Wook-Dong Cho, Martin M o¨ ller,
‡
§
Svetlana A. Prokhorova, Goran Ungar, and
Duncan J. P. Yeardley§
Roy & Diana Vagelos Laboratories
Department of Chemistry, UniVersity of PennsylVania
Philadelphia, PennsylVania 19104-6323
Organische Chemie II, Makromolekulare Chemie
UniVersit a¨ t Ulm, D-89069 Ulm, Germany
Department of Engineering Materials and
Center for Molecular Materials
Scheme 2. Synthesis of (3,4-(3,4,5)n-1)12Gn-X (n ) 1 to 5)
Monodendrons and Determination of Shape and Size by XRD
Analysis of the Pm 3h n Cubic Lattice
UniVersity of Sheffield, Sheffield S1 3JD, U.K.
ReceiVed December 13, 1999
Monodendrons1 synthesized by a convergent method and
1
1,2
dendrimers (prepared by a divergent method or by the covalent
3
or supramolecular assembly of monodendrons to a multiple
1
2
molecular or macromolecular core) are valuable building blocks
used in the construction of object-like nanosystems with novel
functions and properties.1 Recently, we have elaborated a novel
approach to the design, shape, and size analysis of self-assembling
,2,4
monodendrons5 and of self-organizable supramolecular and
-7
macromolecular dendrimers (Scheme 1).2
,5-7
This strategy in-
volves the quantitative analysis by X-ray diffraction (XRD) of
the thermotropic liquid crystalline (LC) 2-D hexagonal columnar
5
6a,b
6c
p6mm and 3-D cubic Pm 3h n and Im 3h m lattices self-organized
from cylindrical and respectively spherical supramolecular den-
drimers. These building blocks are subsequently employed in the
construction of more complex functional architectural motives.2
This contribution reports the design, synthesis, and the structural
analysis by XRD of the first spherical functional monodendron
that self-organizes in a cubic Pm 3h n lattice. The direct visualization
by scanning force microscopy (SFM) of the spherical monoden-
dron both as a single molecule and in disordered monolayers is
also reported. Previous examples of spherical dendritic objects
self-organizable in a cubic lattice were obtained only by the self-
assembly of conical and hemispherical monodendrons.6 Den-
drimers obtained by a divergent synthesis, that have a spherical
shape in solution but lack the shape perfection required for self-
,8
,7
9
organization in a lattice, were also reported. Their spherical shape
9a,b
was estimated, in solution, by SAXS and TEM and on a surface
by AFM or SFM.9
c-f
Scheme 2 and Table 1 summarize the synthesis and the results
of the structural analysis by a combination of differential scanning
calorimetry (DSC), thermal optical polarized microscopy (TOPM),
†
University of Pennsylvania.
‡
Universit a¨ t Ulm.
§
University of Sheffield.
1) (a) Fr e´ chet, J. M. J. Science 1994, 263, 1710. (b) Tomalia. D. A. AdV.
n-1
XRD, and SFM of the first five generations of (3,4-(3,4,5) )-
(
Mater. 1994, 6, 529. (c) Newkome, G. R.; Moorefield, C. N.; V o¨ gtle, F. Den-
dritic Molecules. Concepts, Synthesis, PerspectiVes; VCH: Weinheim, 1996.
12Gn-X (where n is the generation number, n ) 1 to 5)
monodendrons. The difference between the GPC and theoretical
molecular weights of these monodendrons is in agreement with
previously reported data, demonstrating the decrease in hydro-
(
2) Percec, V.; Ahn, C.-H.; Ungar, G.; Yeardley, D. J. P.; M o¨ ller, M.;
Sheiko, S. S. Nature 1998, 391, 161.
3) Zimmerman, S. C.; Zeng, F.; Reichert, D. E. C.; Kolotuchin, S. V.
Science 1996, 271, 1095.
4) (a) Fischer, M.; V o¨ gtle, F. Angew. Chem., Int. Ed. 1999, 38, 884. (b)
Moore, J. S. Acc. Chem. Res. 1997, 30, 402. (c) Jiang, D.-L.; Aida, T. Nature
(
6a
dynamic volume with the increase of Gn. The Pm 3h n cubic lattice
(
dimension (a, in Å), the diameter of the supramolecular or
molecular dendritic sphere (D, in Å), the number of monodendrons
1
997, 388, 454. (d) Bosman, A. W.; Janssen, H. M.; Meijer, E. W. Chem.
ReV. 1999, 99, 1665. (e) Percec, V.; Ahn, C.-H.; Barboiu, B. J. Am. Chem.
(µ) that self-assemble into a sphere, the temperature at which the
Soc. 1997, 119, 12978.
XRD analysis was performed, the functional group X, and the
theoretical molar mass of the monodendron are also shown in
(
5) Percec, V.; Johansson, G.; Ungar, G.; Zhou, J. J. Am. Chem. Soc. 1996,
1
18, 9855.
6) (a) Balagurusamy, V. S. K.; Ungar, G.; Percec, V.; Johansson, G. J.
(
Am. Chem. Soc. 1997, 119, 1539. (b) Percec, V.; Cho, W.-D.; Mosier, P. E.;
Ungar, G.; Yeardley, D. J. P. J. Am. Chem. Soc. 1998, 120, 11061. (c)
Yeardley, D. J. P.; Ungar, G.; Percec, V.; Holerca, H. N.; Johansson, G. J.
Am. Chem. Soc. 2000, 122, 1684.
(9) (a) Jackson, C. L.; Chanzy, H. D.; Booy, F. P.; Drake, B. J.; Tomalia,
D. A.; Bauer, B. J.; Amis, E. J. Macromolecules 1998, 31, 6259. (b) Prosa,
T. J.; Bauer, B. J.; Amis, E. J.; Tomalia, D. A.; Scherrenberg, R. J. Polym.
Sci., Part B: Polym. Phys. 1997, 35, 2913. (c) Sheiko, S. S.; Eckert, G.;
Ignat’eva, G.; Muzafarov, A.; Spickermann, J.; R a¨ der, H. J.; M o¨ ller, M.
Macromol. Rapid Commun. 1996, 17, 283. (d) Hierlemann, A.; Campbell, J.
K.; Baker, L. A.; Crooks, R. M.; Ricco, A. J. J. Am. Chem. Soc. 1998, 120,
5323. (e) Sheiko, S. S. AdV. Polym. Sci. 2000, 151, 61. (f) Huck, W. T. S.;
Veggel, F. C. J. M.; Kropman, B. L.; Blank, D. H. A.; Keim, E. G.; Smithers,
M. M. A.; Reinhoudt, D. N. J. Am. Chem. Soc. 1995, 117, 8293. (g) Percec,
V.; Chu, P.; Ungar, G.; Zhou, J. J. Am. Chem. Soc. 1995, 117, 11441.
(
7) Hudson, S. D.; Jung, H.-T.; Percec, V.; Cho, W.-D.; Johansson, G.;
Ungar, G.; Balagurusamy, V. S. K. Science 1997, 278, 449.
8) (a) Percec, V. Ahn, C.-H.; Cho, W.-D.; Jamieson, A. M.; Kim, J.;
(
Leman, T.; Schmidt, M.; Gerle, M.; M o¨ ller, M.; Prokhorova, S. A.; Sheiko,
S. S.; Cheng, S. Z. D.; Zhang, A.; Ungar, G.; Yeardley, D. J. P. J. Am. Chem.
Soc. 1998, 120, 8619. (b) Percec, V.; Ahn, C.-H.; Bera, T. K.; Ungar, G.;
Yeardley, D. J. P. Chem. Eur. J. 1999, 5, 1070.
1
0.1021/ja9943400 CCC: $19.00 © 2000 American Chemical Society
Published on Web 04/14/2000