Inorganic Chemistry
Communication
(Figure 4a), which is typical for an organic radical. To further
elucidate this paramagnetic property, the spin state was
ACKNOWLEDGMENTS
■
We thank Prof. Hitoshi Miyasaka for help in interpreting the IR
spectra. We thank The Pennsylvania State University and the
NSF (Grant CHE-0131112 for the diffractometer purchase) for
financial support of this work.
REFERENCES
■
(1) (a) Anderson, P. W.; Lee, P. A.; Saitoh, M. Solid State Commun.
1973, 13, 595−598. (b) Cohen, M. J.; Coleman, L. B.; Garito, A. F.;
Heeger, A. J. Phys. Rev. B 1974, 10, 1298−1307. (c) Torrance, J. B. Acc.
Chem. Res. 1979, 12, 79−86. (d) Herbstein, F. H.; Kapon, M. Cryst. Rev.
2008, 14, 3−74.
Figure 4. (a) EPR spectrum of ZnDimer (solid line) and TEMPO
(dotted line) at room temperature and (b) ZnDimer and coal (S = 1/2)
Rabi oscillation at 100 K.
(2) (a) Kaim, W.; Moscherosch, M. Coord. Chem. Rev. 1994, 129, 157−
́ ́
193. (b) Azcondo, M. T.; Ballester, L.; Calderon, L.; Gutierrez, A.;
́
Perpinan, M. F. Polyhedron 1995, 14, 2339−2347. (c) Ballester, L.; Gil,
̃
A. M.; Gutier
Amador, U.; Campo, J.; Palacio, F. Inorg. Chem. 1997, 36, 5291−5298.
(d) Ballester, L.; Gutierrez, A.; Perpinan, M. F.; Azcondo, M. T. Coord.
́
rez, A.; Perpinan, M. F.; Azcondo, M. T.; Sanchez, A. E.;
́
́
̃
́
́
̃
investigated by Rabi oscillation measurements.9 The period of
Chem. Rev. 1999, 190, 447−470. (e) Avendano, C.; Zhang, Z.; Ota, A.;
Rabi oscillation demonstrates that the spin state in ZnDimer
Zhao, H.; Dunbar, K. R. Angew. Chem. 2011, 123, 6673−6677.
1
corresponds to S = /2 spin quantum number (Figure 4b). In
́
(f) Ballesteros-Rivas, M.; Ota, A.; Reinheimer, E.; Prosvirin, A.; Valdes-
Martinez, J.; Dunbar, K. R. Angew. Chem. 2011, 132, 9877−9881.
addition, we quantified the number of unpaired spins in
ZnDimer by comparing the EPR spectrum of (2,2,6,6-
tetramethylpiperidin-1-yl)oxyl (TEMPO) as a radical standard.
Both of the solid materials show isotropic spectra (Figure 4a).
The double integral values allowed us to determine that
ZnDimer contains 0.096 spins per molecule. If each TCNQ−
ligand was the source of this spin, we would expect 2 spins per
molecule. Thus, we conclude that the paramagnetic signal arises
from low-level impurities. We consider it most likely that these
impurities are lattice defects (including the surface of the solids),
where the pairing of TCNQ− ligand is disrupted. Furthermore,
the low number of spins present for ZnDimer supports the
conclusion that (in cases where the pairing between TCNQ−
units is preserved) the TCNQ− species are strongly
antiferromagnetically coupled, resulting in an EPR-silent species.
In total, we find that the electronic and magnetic properties of
ZnDimer are dominated by the properties of the individual
components, especially those of the TCNQ− and [TCNQ−
TCNQ]2− ligands. Specifically, the stacking in the crystal is
arranged to maximize the coupling between TCNQ− molecules
held between [TCNQ−TCNQ]2− ligands. This pairwise
TCNQ− interaction is testified by the CT transition in the
UV−vis−NIR spectrum and the dominance of a ground-state
singlet at room temperature. Nevertheless, the coordination of a
[TCNQ−TCNQ]2− ligand to the zinc center does perturb its
structure, as seen in the IR spectrum. Thus, it is possible that
future changes in the metal will further adjust the electronic and
magnetic properties of the [TCNQ−TCNQ]2− ligand.
(3) (a) Bartley, S. L.; Dunbar, K. R. Angew. Chem., Int. Ed. Engl. 1991,
30, 448−450. (b) Oshio, H.; Ino, E.; Mogi, I.; Ito, T. Inorg. Chem. 1993,
32, 5697−5703. (c) Kunkeler, P. J.; Koningsbruggen, P. J.; Cornelissen,
J. P.; Horst, A. N.; Kraan, A. M.; Spek, A. L.; Haasnoot, J. G.; Reedijk, J. J.
Am. Chem. Soc. 1996, 118, 2190−2197. (d) Miyasaka, H.; Campos-
Fernan
́
́
dez; Clerac, R.; Dunbar, K. R. Angew. Chem. 2000, 112, 3989−
3993. (e) Cler
́
ac, R.; O’Kane, S.; Cowen, J.; Ouyang, X.; Heintz, R.;
Zhao, H.; Bazile, M. J.; Dunbar, K. R. Chem. Mater. 2003, 15, 1840−
1850. (f) Miyasaka, H.; Izawa, T.; Takahashi, N.; Yamashita, M.;
Dunbar, K. R. J. Am. Chem. Soc. 2006, 128, 11358−11359.
(4) (a) Dong, V.; Endres, H.; Keller, H. J.; Moroni, W.; Nothe, D. Acta
̈
Crystallogr., Sect. B 1977, 33, 2428−2431. (b) Morosin, B.; Plastas, H. J.;
Coleman, L. B.; Stewart, J. M. Acta Crystallogr., Sect. B 1978, 34, 540−
543. (c) Harms, R. H.; Keller, H. J.; Nothe, D.; Werner, M.; Gundel, D.;
̈
Sixl, H.; Soos, Z. G.; Metzger, R. M. Mol. Cryst. Liq. Cryst. 1981, 65,
179−196. (d) Hoffmann, S. K.; Corvan, P. J.; Singh, P.; Sethulekshmi, C.
N.; Metzger, R. M.; Hatfield, W. E. J. Am. Chem. Soc. 1983, 105, 4608−
4617. (e) Radhakrishnan, T. P.; Van Engen, D.; Soos, Z. G. Mol. Cryst.
Liq. Cryst. 1987, 150, 473−492. (f) Alonso, C.; Ballester, L.; Gutier
́
rez,
A.; Perpinan, M. F.; Sanchez, A. E.; Azcondo, M. T. Eur. J. Inorg. Chem.
2005, 486−495.
́
́
̃
(5) (a) Zhao, H.; Heintz, R. A.; Dunbar, K. R. J. Am. Chem. Soc. 1996,
118, 12844−12845. (b) Zhao, H.; Heintz, R. A.; Ouyang, X.; Dunbar, K.
R. Chem. Mater. 1999, 11, 736−746. (c) Shimomura, S.; Horike, S.;
Matsuda, R.; Kitagawa, S. J. Am. Chem. Soc. 2007, 129, 10990−10991.
(d) Shimomura, S.; Matsuda, R.; Kitagawa, S. Chem. Mater. 2010, 22,
4129−4131.
(6) Kistenmacher, T. J.; Emge, T. J.; Bloch, A. N.; Cowan, D. O. Acta
Crystallogr., Sect. B 1982, 38, 1193−1199.
(7) (a) Boyd, R. H.; Phillips, W. D. J. Chem. Phys. 1965, 43, 2927−
2929. (b) Iida, Y. Bull. Chem. Soc. Jpn. 1969, 42, 71−75. (c) Hoekstra, A.;
Spoelder, T.; Vos, A. Acta Crystallogr., Sect. B 1972, 28, 14−25.
(8) (a) Kepler, R. G.; Bierstedt, P. E.; Merrifield, R. E. Phys. Rev. Lett.
1960, 5, 503−504. (b) Melby, L. R.; Harder, R. J.; Hertler, W. R.;
Mahler, W.; Benson, R. E.; Mochel, W. E. J. Am. Chem. Soc. 1962, 84,
3374−3387.
ASSOCIATED CONTENT
■
S
* Supporting Information
Crystallographic data in CIF format, materials and methods,
crystal data, IR spectra, supplementary tables, and specific
resistivity. The Supporting Information is available free of charge
(9) (a) Isoya, J.; Kanda, H.; Norris, J. R.; Tang, J.; Bowman, M. K. Phys.
Rev. B: Condens. Matter Mater. Phys. 1990, 41, 3905−3913. (b) Moro, F.;
Kaminski, D.; Tuna, F.; Whitehead, G. F. S.; Timco, G. A.; Collison, D.;
Winpenny, R. E. P.; Ardavan, A.; Mclnnes, E. J. L. Chem. Commun. 2014,
50, 91−93.
AUTHOR INFORMATION
■
Corresponding Author
Notes
The authors declare no competing financial interest.
C
Inorg. Chem. XXXX, XXX, XXX−XXX