SCHEME 1. Synthesis of 2 by Aza-Wacker Oxidative
Cyclization
A Facile Access to Pyrroles from Amino Acids
via an Aza-Wacker Cyclization
Zuhui Zhang, Jintang Zhang, Jiajing Tan, and
Zhiyong Wang*
Hefei National Laboratory for Physical Science at
Microscale, Joint Laboratory of Green Synthetic Chemistry
and Department of Chemistry, UniVersity of Science and
Technology of China, Hefei, Anhui 230026, China
TABLE 1. Optimazation of Aza-Wacker Cyclizationa
ReceiVed February 22, 2008
entry solvent catalyst (10 mol %)
oxidant
yieldb (%)
1
2
3
4
5
6
7
8
9
MeOH
EtOH
i-PrOH
THF
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
air
air
air
air
air
air
air
air
air
air
air
O2
23
25
trace
trace
trace
trace
trace
trace
41
44
45
50
52
Tol
DMF
DMSO
CHCl3
EtOH
PdCl2
A facile and efficient synthesis of pyrroles from readily
available amino acids is described. The key step in the
method is an aza-Wacker oxidative cyclization catalyzed by
palladium(II)/Cu(OTf)2. A series of pyrroles were obtained
by this method under mild conditions.
10 EtOH
11 EtOH
12 EtOH
13 EtOH
14 EtOH
15 EtOH
16 EtOH
PdCl2(MeCN)2
PdCl2(PhCN)2
PdCl2(PhCN)2
PdCl2(PhCN)2
PdCl2(PhCN)2
PdCl2(PhCN)2
PdCl2(PhCN)2
CuCl2 (10 mol %)
Cu(OTf)2 (10 mol %)
Cu(OTf)2 (50 mol %)
Cu(OTf)2 (100 mol %)
69
80
88
a Reaction conditions: 0.2 M of 1a in solvent. b Isolated yield.
The pyrrole derivatives are widespread in numerous natural
products, and many of them display diverse biological activities.1
Besides, pyrrole is one common structural unit in many organic
materials.2 In the preparation of pyrrole derivatives, however,
many disadvantages including harsh reaction conditions and poor
yields limit the application of classical methods, such as Knorr
reaction and Paal-Knorr reaction.3,4 Although some novel
strategies have been developed to synthesize pyrrole derivatives
recently,5,6 the preparation of pyrrole derivatives by more
efficient and facile methods is still desired.
Encouraged by these results, we envisioned that the Wacker
reaction can be applied to the synthesis of pyrrole ring 2, as
shown in Scheme 1. The substrates 1 for the aza-Wacker
oxidative reaction can be obtained from the natural amino
acids. In 1996, the Cushman group11 reported an interesting
work on the application of amino acids for pyrrole synthesis
via aldol condensation, but the yields were always 5-44%,
which somewhat restricted its application.
On the other hand, the palladium(II)-catalyzed Wacker-
type oxidative cyclization is a well-known process for the
formation of heterocycles.7–9 Recently, we have focused our
research on Wacker reactions and have developed some
methods for the preparation of chromanones and quinolines.10
(5) For recent reports, see: (a) St.Cyr, D. J.; Arndtsen, B. A. J. Am. Chem.
Soc. 2007, 129, 12366. (b) Wan, X. B.; Xing, D.; Fang, Z.; Li, B. J.; Zhao, F.;
Zhang, K. Y.; Yang, L. P.; Shi, Z. J. J. Am. Chem. Soc. 2006, 128, 12046. (c)
Yamamoto, Y.; Hayashi, H.; Saigoku, T.; Nishiyama, H. J. Am. Chem. Soc.
2005, 127, 10804. (d) Gorin, D. J.; Davis, N. R.; Toste, F. D. J. Am. Chem. Soc.
2005, 127, 11260. (e) Galliford, C. V.; Scheidt, K. A. J. Org. Chem. 2007, 72,
1811. (f) Shindo, M.; Yoshimura, Y.; Hayashi, M.; Soejima, H.; Yoshikawa,
T.; Matsumoto, K.; Shishido, K. Org. Lett. 2007, 9, 1963. (g) Binder, J. T.;
Kirsch, S. F. Org. Lett. 2006, 8, 2151. (h) Milgram, B. C.; Eskildsen, K.; Richter,
S. M.; Scheidt, W. R.; Scheidt, K. A. J. Org. Chem. 2007, 72, 3941. (i) Mart´ın,
R.; Larsen, C. H.; Cuenca, A.; Buchwald, S. L. Org. Lett. 2007, 9, 3379. (j)
Rivero, M. R.; Buchwald, S. L. Org. Lett. 2007, 9, 973. (k) Dong, H. J.; Shen,
M. H.; Redford, J. E.; Stokes, B. J.; Pumphrey, A. L.; Driver, T. G. Org. Lett.
2007, 9, 5191. (l) Istrate, F. M.; Gagosz, F. Org. Lett. 2007, 9, 3181. (m) Peng,
L. L.; Zhang, X.; Ma, J.; Zhong, Z. Z.; Wang, J. B. Org. Lett. 2007, 9, 1445. (n)
St. Cyr, D. J.; Martin, N.; Arndtsen, B. A. Org. Lett. 2007, 9, 449. (o) Hiroya,
K.; Matsumoto, S.; Ashikawa, M.; Ogiwara, K.; Sakamoto, T. Org. Lett. 2006,
8, 5349. (p) Crawley, M. L.; Goljer, I.; Jenkins, D. J.; Mehlmann, J. F.; Nogle,
L.; Dooley, R.; Mahaney, P. E. Org. Lett. 2006, 8, 5837. (q) Shimizu, M.;
Takahashi, A.; Kawai, S. Org. Lett. 2006, 8, 3585. (r) Winkler, J. D.; Ragains,
J. R. Org. Lett. 2006, 8, 4031. (s) Lu, L. H.; Chen, G. F.; Ma, S. M. Org. Lett.
2006, 8, 835. (t) Chiba, S.; Wang, Y.-F.; Lapointe, G.; Narasaka, K. Org. Lett.
2008, 10, 313. (u) Bissember, A. C.; Phillis, A. T.; Banwell, M. G.; Willis,
A. C. Org. Lett. 2007, 9, 5421. (v) Gabriele, B.; Salerno, G.; Fazio, A. J. Org.
Chem. 2003, 68, 7853.
(1) (a) Jones, R. A., Ed. Pyrrole, Part II; Wiley: New York, 1992. (b)
Fu¨rstner, A. Angew. Chem., Int. Ed. 2003, 42, 3582. (c) Bando, T.; Sugiyama,
H. Acc. Chem. Res. 2006, 39, 935. (d) Hoffmann, H.; Lindel, T. Synthesis 2003,
1753.
(2) (a) Beverina, L.; Fu, J.; Lechercq, A.; Zojer, E.; Pacher, P.; Barlow, S.;
VanStryland, E. W.; Hagan, D. J.; Bre´das, J.-L.; Marder, S. L. J. Am. Chem.
Soc. 2005, 127, 7282. (b) Cuesta, L; Gross, D.; Lynch, V. M.; Ou, Z.; Kajonkijya,
W.; Ohkubo, K.; Fukuzumi, S.; Kadish, K. M.; Sessler, J. L. J. Am. Chem. Soc.
2007, 129, 11696.
(3) For reviews on classical methods, see: (a) Gilchrist, T. L. J. Chem. Soc.,
Perkin Trans. 1 1999, 2849. (b) Balme, G. Angew.Chem., Int.Ed. 2004, 43, 6238.
(c) Gribble G. W. In Name Reactions in Heterocycle Synthesis; Li, J. J., Ed.;
Wiley: New York; Chapter 2.2.
(4) For reports on classical methods, see: (a) Manley, J. M.; Kalman, M. J.;
Conway, B. G.; Ball, C. C.; Havens, J. L.; Vaidyanathan, R. J. Org. Chem.
2003, 68, 6447. (b) Chen, J.; Wu, H.; Zheng, Z.; Jin, C.; Zhang, X.; Su, W.
Tetrahedron Lett. 2006, 47, 5383. (c) Banik, B. K.; Banik, I.; Renteria, M.;
Dasgupta, S. K. Tetrahedron Lett. 2005, 46, 2643.
5180 J. Org. Chem. 2008, 73, 5180–5182
10.1021/jo800433b CCC: $40.75 2008 American Chemical Society
Published on Web 05/31/2008