L. Royer et al. / Tetrahedron Letters 46 (2005) 4595–4597
4597
features of this method include (a) operational simplic-
References and notes
ity, (b) no need for any other additive to promote the
reaction, (c) short reaction times, (d) the use of cheap,
commercially available, relatively non toxic reagents,
and (e) high yields of the desired products.
1. Dyker, G. Angew. Chem., Int. Ed. 1997, 36, 1700.
2. Shafran, Y. M.; Bakulev, V. A.; Mokrushin, V. S. Russ.
Chem. Rev. 1989, 58, 148.
3. (a) Weinstok, L. M.; Davis, P.; Handelsman, B.; Tull, R.
J. Org. Chem. 1967, 32, 2823; (b) Matier, W. L.; Owens,
D. A.; Comer, W. T.; Deitchman, D.; Ferguson, H. C.;
Seidehamel, R. J.; Young, J. R. J. Med. Chem. 1973, 16,
901.
4. Experimental
4.1. A typical procedure
4. Mai, K.; Patil, G. Tetrahedron Lett. 1984, 25, 4583.
5. Groger, H. Chem. Rev. 2003, 103, 2795.
A mixture of benzaldehyde (212 mg, 2 mmol), aniline
(186 mg, 2 mmol), and trimethylsilyl cyanide (300 mg,
3 mmol) in dry acetonitrile (2 mL) was stirred at room
temperature in the presence of iodine (51 mg, 0.2 mmol).
After completion of reaction (TLC), the reaction mix-
ture was extracted with ethyl acetate (2 · 20 mL). The
organic layer was washed with water (20 mL), and brine
(20 mL) dried (MgSO4), and concentrated. The residue
was chromatographed over silica gel, eluted 20% ethyl
acetate in hexane to afford the pure product 2-(N-Ani-
lino)-2-phenylacetonitrile in excellent yield (391 mg,
94%). Although we could isolate TMS-protected a-
aminonitrile without aqueous work-up of the reaction
mixture, the isolated yield was low due to partial cleav-
age of silyl group to aminonitrile during column chro-
matography. In fact, partial cleavage was even
observed during TLC run. All yields refer to isolated
products. All products are known and were character-
ized by NMR and mass spectra.
6. Harusawa, S.; Hamada, Y.; Shiori, T. Tetrahedron Lett.
1979, 20, 4663.
7. Iyer, M. S.; Gigstad, M.; Namdev, N. D.; Lipton, M.
J. Am. Chem. Soc. 1996, 118, 4910.
8. Sigman, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 1998,
120, 5315.
9. Takamura, M.; Hamashima, Y.; Usuda, H.; Kanai, M.;
Shibasaki, M. Angew. Chem., Int. Ed. 2000, 39, 1650.
10. Kobayashi, S.; Busujima, T.; Nagayama, S. Chem. Com-
mun. 1998, 981.
11. Ranu, B. C.; Dey, S. S.; Hajra, A. Tetrahedron 2002, 58,
2529.
12. Yadav, J. S.; Reddy, B. V.; Eeshwaraiah, B.; Srinivas, M.
Tetrahedron 2004, 60, 1767.
13. De, S. K.; Gibbs, R. A. Tetrahedron Lett. 2004, 45, 7407.
14. (a) De, S. K. Tetrahedron Lett. 2004, 45, 2919; (b) De, S.
K.; Gibbs, R. A. Tetrahedron Lett. 2004, 45, 8141; (c) De,
S. K. Tetrahedron Lett. 2004, 45, 2339; (d) De, S. K.
Tetrahedron Lett. 2004, 45, 1035; (e) De, S. K. Tetrahedron
Lett. 2003, 44, 9055; (f) De, S. K.; Gibbs, R. A.
Tetrahedron Lett. 2005, 45, 1647; (g) De, S. K.; Gibbs,
R. A. Tetrahedron Lett. 2005, 46, 1811.
15. (a) Deka, N.; Kalita, D. J.; Borah, R.; Sharma, J. C.
J. Org. Chem. 1997, 62, 1563; (b) Vaino, A. R.; Szarek, W.
A. Synlett 1995, 1157; (c) Lipshutz, B. H.; Keith, J.
Tetrahedron Lett. 1998, 39, 2495.
Acknowledgments
We thank the reviewers for their valuable suggestions
and comments.
16. (a) Ojima, I.; Inaba, S. Chem. Lett. 1975, 737; (b) Stout,
D.; Black, L.; Matier, W. J. Org. Chem. 1983, 48, 5369; (c)
Anh, N. T.; Eisentein, O. Nouv. J. Chem. 1977, 1, 6; (d)
Houk, K. N.; Wu, Y.-D. J. Am. Chem. Soc. 1987, 109,
908; (e) Heydari, A.; Fatemi, P.; Alizadeh, A. A. Tetra-
hedron Lett. 1998, 39, 3049; (f) Chakraborty, T. K.; Azhar,
H. K.; Reddy, V. G. Tetrahedron 1995, 51, 9179; (g) Reetz,
M. T.; Hubel, M.; Jaeger, R.; Schwickardi, R.; Goddard,
R. Synthesis 1994, 733; (h) Huang, J.; Corey, E. J. Org.
Lett. 2004, 6, 5027.
Supplementary data
Representative experimental procedures in details and
spectral data of all compounds. The supplementary data