Page 5 of 7
Journal of the American Chemical Society
of
a nickel catalyzed process using radicals generated from
In conclusion, this work demonstrates the combination
of nickel-catalyzed oxidative cyclization and reductive
cross-electrophile coupling as a new approach for the
catalytic union of aldehydes, alkynes, and alkyl halides.
The use of chlorosilanes to generate a reactive vi-
nylnickel(II) intermediate was essential in enabling the
reductive cross-electrophile coupling. The reaction al-
lows for the use of air-stable alkyl halides as alkylating
reagents in place of preformed organometallic reagents
previously employed, which significantly expands the
scope and functional group tolerance of the procedure.
Efforts to expand these findings towards other classes of
cyclizations and multicomponent couplings are in pro-
gress.
hydrometallation with a cobalt catalyst, see: (g) Green, S. A.; Matos,
J. L. M.; Yagi, A.; Shenvi, R. A. J. Am. Chem. Soc., 2016, 138,
12779.
1
2
3
4
5
6
7
8
(5)
(a) Zuo, Z.; Ahneman, D. T.; Chu, L.; Terrett, J. A.; Doyle,
A. G.; MacMillan, D. W. C. Science, 2014, 345, 437. (b) Tellis, J. C.;
Primer, D. N.; Molander, G. A. Science, 2014, 345, 433. (c) Matsui, J.
K.; Lang, S. B.; Heitz, D. R.; Molander, G. A. ACS Catal., 2017, 7,
2563. (d) Twilton, J.; Le, C.; Zhang, P.; Shaw, M. H.; Evans, R. W.;
MacMillan, D. W. C. Nat. Rev. Chem., 2017, 1, 0052.
(6)
(a) Jackson, E. P.; Malik, H. A.; Sormunen, G. J.; Baxter,
9
R. D.; Liu, P.; Wang, H.; Shareef, A.-R.; Montgomery, J. Acc. Chem.
Res., 2015, 48, 1736. (b) Standley, E. A.; Tasker, S. Z.; Jensen, K. L.;
Jamison, T. F. Acc. Chem. Res., 2015, 48, 1503. (c) Montgomery, J.
In Organometallics in Synthesis; John Wiley & Sons, Inc.: 2013, p
319. (d) Tanaka, K.; Tajima, Y. Eur. J. Org. Chem., 2012, 2012,
3715. (e) Moslin, R. M.; Miller-Moslin, K.; Jamison, T. F. Chem.
Commun., 2007, 4441. (f) Montgomery, J. Angew. Chem. Int. Ed.,
2004, 43, 3890.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(7)
(a) Tang, X.-Q.; Montgomery, J. J. Am. Chem. Soc., 1999,
ASSOCIATED CONTENT
121, 6098. (b) Chan, J.; Jamison, T. F. J. Am. Chem. Soc., 2004, 126,
10682. (c) Tang, X.-Q.; Montgomery, J. J. Am. Chem. Soc., 2000,
122, 6950. (d) Montgomery, J. Acc. Chem. Res., 2000, 33, 467.
(8)
119, 9065.
(9)
Supporting Information
Experimental details, copies of spectra, and additional dis-
cussion of mechanism. This material is available free of
Oblinger, E.; Montgomery, J. J. Am. Chem. Soc., 1997,
Chevliakov, M. V.; Montgomery, J. Angew. Chem. Int. Ed.,
1998, 37, 3144.
(10) (a) Huang, W.-S.; Chan, J.; Jamison, T. F. Org. Lett., 2000,
2, 4221. (b) Patel, S. J.; Jamison, T. F. Angew. Chem. Int. Ed., 2003,
42, 1364.
(11) (a) Mahandru, G. M.; Liu, G.; Montgomery, J. J. Am.
Chem. Soc., 2004, 126, 3698. (b) Miller, K. M.; Huang, W.-S.;
Jamison, T. F. J. Am. Chem. Soc., 2003, 125, 3442.
(12) (a) Ogoshi, S.; Arai, T.; Ohashi, M.; Kurosawa, H. Chem.
Commun., 2008, 1347. (b) Yang, Y.; Zhu, S.-F.; Zhou, C.-Y.; Zhou,
Q.-L. J. Am. Chem. Soc., 2008, 130, 14052. (c) Nie, M.; Fu, W.; Cao,
Z.; Tang, W. Org. Chem. Front., 2015, 2, 1322.
(13) (a) Johnson, K. A.; Biswas, S.; Weix, D. J. Chem. Eur. J.,
2016, 22, 7399. (b) Cherney, A. H.; Reisman, S. E. J. Am. Chem.
Soc., 2014, 136, 14365. (c) Fujihara, T.; Nogi, K.; Xu, T.; Terao, J.;
Tsuji, Y. J. Am. Chem. Soc., 2012, 134, 9106.
AUTHOR INFORMATION
Corresponding Author
*jmontg@umich.edu
Funding Sources
No competing financial interests have been declared. We
are grateful to the National Institutes of Health
(R35GM118133) for support of this work.
ACKNOWLEDGMENT
(14) See supporting information for additional screening,
optimization, and control results.
Michael Robo is acknowledged for useful discussions.
(15) Although previous studies suggest that exogenous iodide
salts are necessary to facilitate electron transfer from manganese to
Ni(II) intermediates (see ref 13c), the cyclization reaction occurs in
the absence of iodide salts, albeit with lower yields and selectivities.
We believe the role of iodide is limited to the in situ Finkelstein
reaction, slowly forming the alkyl iodide and limiting dimerization.
(16) Boit, T. B.; Weires, N. A.; Kim, J.; Garg, N. K. ACS
Catal., 2018, 8, 1003.
(17) (a) Böhm, V. P. W.; Weskamp, T.; Gstöttmayr, C. W. K.;
Herrmann, W. A. Angew. Chem. Int. Ed., 2000, 39, 1602. (b) Wolfe,
J. P.; Buchwald, S. L. J. Am. Chem. Soc., 1997, 119, 6054. (c)
Grushin, V. V.; Alper, H. Chem. Rev., 1994, 94, 1047.
(18) (a) Amatore, C.; Jutand, A. J. Am. Chem. Soc., 1991, 113,
2819. (b) Fujihara, T.; Horimoto, Y.; Mizoe, T.; Sayyed, F. B.; Tani,
Y.; Terao, J.; Sakaki, S.; Tsuji, Y. Org. Lett., 2014, 16, 4960.
(19) (a) Jones, G. D.; Martin, J. L.; McFarland, C.; Allen, O. R.;
Hall, R. E.; Haley, A. D.; Brandon, R. J.; Konovalova, T.; Desrochers,
P. J.; Pulay, P.; Vicic, D. A. J. Am. Chem. Soc., 2006, 128, 13175. (b)
Lin, X.; Phillips, D. L. J. Org. Chem., 2008, 73, 3680. (c) Lin, X.;
Sun, J.; Xi, Y.; Lin, D. Organometallics, 2011, 30, 3284. (d) B., P. V.;
Elena, B.; Miguel, G. I.; J., C. D. Angew. Chem. Int. Ed., 2007, 46,
8790. (e) Zultanski, S. L.; Fu, G. C. J. Am. Chem. Soc., 2011, 133,
15362.
REFERENCES
(1)
Gosmini, C.; Jacobi von Wangelin, A. Chem. Eur. J., 2014, 20, 6828.
(2) (a) Everson, D. A.; Weix, D. J. J. Org. Chem., 2014, 79,
Knappke, C. E. I.; Grupe, S.; Gärtner, D.; Corpet, M.;
4793. (b) Peng, L.; Li, Y.; Li, Y.; Wang, W.; Pang, H.; Yin, G. ACS
Catal., 2017, 310. (c) Moragas, T.; Correa, A.; Martin, R. Chem. Eur.
J., 2014, 20, 8242. (d) Cherney, A. H.; Kadunce, N. T.; Reisman, S.
E. J. Am. Chem. Soc., 2013, 135, 7442. (e) León, T.; Correa, A.;
Martin, R. J. Am. Chem. Soc., 2013, 135, 1221. (f) Liu, Y.; Cornella,
J.; Martin, R. J. Am. Chem. Soc., 2014, 136, 11212. (g) Wang, X.;
Liu, Y.; Martin, R. J. Am. Chem. Soc., 2015, 137, 6476. (h)
Börjesson, M.; Moragas, T.; Martin, R. J. Am. Chem. Soc., 2016, 138,
7504. (i) Serrano, E.; Martin, R. Angew. Chem. Int. Ed., 2016, 55,
11207.
(3)
Everson, D. A.; Jones, B. A.; Weix, D. J. J. Am. Chem.
Soc., 2012, 134, 6146.
(4)
(a) Fu, G. C. ACS Cent. Sci., 2017, 3, 692. (b) Biswas, S.;
Weix, D. J. J. Am. Chem. Soc., 2013, 135, 16192. (c) Zultanski, S. L.;
Fu, G. C. J. Am. Chem. Soc., 2013, 135, 624. (d) Schley, N. D.; Fu, G.
C. J. Am. Chem. Soc., 2014, 136, 16588. For examples of nickel
catalyzed reactions using alkyl radicals generated from decomposition
of redox active esters, see: (e) Qin, T.; Cornella, J.; Li, C.; Malins, L.
R.; Edwards, J. T.; Kawamura, S.; Maxwell, B. D.; Eastgate, M. D.;
Baran, P. S. Science, 2016, 352, 801. (f) Wang, J.; Qin, T.; Chen, T.
G.; Wimmer, L.; Edwards, J. T.; Cornella, J.; Vokits, B.; Shaw, S. A.;
Baran, P. S. Angew. Chem. Int. Ed., 2016, 55, 9676. For an example
(20) Gutierrez, O.; Tellis, J. C.; Primer, D. N.; Molander, G. A.;
Kozlowski, M. C. J. Am. Chem. Soc., 2015, 137, 4896.
(21) See the Supporting Information for
a more detailed
mechanistic discussion and preliminary mechanistic studies.
5
ACS Paragon Plus Environment