2926
M.A. Taige et al. / Journal of Organometallic Chemistry 696 (2011) 2918e2927
only on the nature of the catalyst, but also on the substrates, the
ratio of the substrates, the solvent and the reaction temperature. It
is therefore not surprising that all investigated complexes with the
exception of the very unreactive complexes 8 and 9 catalyze the
hydrosilylation as well as the dehydrosilylation reaction. Still, these
effects need further investigation, which will be the subject of
future studies. For the in general most active complex 5 we also
looked at the concentration- and temperature effects for the
dimethylphenylsilane (Tables 8 and 9). For all concentrations no
reaction was observed after 30 s.
Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: þ44 1223
Appendix. Supplementary material
Supplementary data associated with this article can be found, in
References
3.9. Concentration dependence
[1] G. Berthon-Gelloz, I.E. Marko, N-Heterocyclic Carbenes in Synthesis. Wiley-
VCH Verlag GmbH & Co. KGaA, 2006, 119.
[2] G. Berthon-Gelloz, O. Buisine, J.-F. Briere, G. Michaud, S. Sterin, G. Mignani,
B. Tinant, J.-P. Declercq, D. Chapon, I.E. Marko, J. Organomet. Chem. 690 (2005)
6156.
The results are in line with those given in Table 5. Increasing the
amount of catalyst from 0.5 to 1.0 mol% does not lead to higher
yields of hydrosilylation product. Reducing the catalyst amount
from 0.5 to 0.1 mol% leads to a lower conversion, but even with only
0.001 mol% 5, a yield of 26% is obtained after a reaction time of only
6 h. The highest selectivity for the formation of the linear hydro-
silylation product (Table 8, entries 2, 6, 7 and 10) was found for
0.1 mol%. Dehydrosilylation was only observed for the higher
catalyst concentrations 0.1e1 mol% (Table 8, entries 2, 4 and 6).
In the course of this study we had learned that in the case of the
bis(trimethylsiloxy)methyl-silane the reaction could be run at
lower temperatures (Table 6) and we therefore also looked at the
influence of the reaction temperature on the conversion of the
reaction of styrene with dimethylphenylsilane (Table 9).
[3] S.E. Denmark, Z. Wang, Org. Synth. 81 (2005) 54.
[4] S. Diez-Gonzalez, N. Marion, S.P. Nolan, Chem. Rev. 109 (2009) 3612.
[5] J.F. Harrod, Organosilicon Chemistry VI: From Molecules to Materials. Wiley-
VCH Verlag GmbH & Co. KGaA, 2005, 392.
[6] B. Marciniec, Coord. Chem. Rev. 249 (2005) 2374.
[7] P.A. Mayes, P. Perlmutter, Modern Reduction Methods. Wiley-VCH Verlag
GmbH & Co. KGaA, 2008, 87.
[8] A.T. Normand, K.J. Cavell, Eur. J. Inorg. Chem. (2008) 2781.
[9] S. Putzien, O. Nuyken, F.E. Kuehn, Prog. Polym. Sci. 35 (2010) 687.
[10] A.K. Roy, Adv. Organomet. Chem. 55 (2008) 1.
[11] M. Drees, T. Strassner, Inorg. Chem. 46 (2007) 10850.
[12] Y.-D. Wu, L.W. Chung, X.-H. Zhang, Computational Modeling for Homoge-
neous and Enzymatic Catalysis. Wiley-VCH Verlag GmbH & Co. KGaA, 2008,
285.
[13] K. Yamamoto, T. Hayashi, in: , second ed., Transition Metals for Organic
Synthesis, vol. 2 Wiley-VCH Verlag GmbH & Co. KGaA, 2004, p. 167.
[14] I. Ojima, in: , The Chemistry of Organic Silicon Compounds, vol. 2, Wiley-
Interscience, New York, 1989, p. 1479.
3.10. Temperature dependence
[15] J.A. Reichl, D.H. Berry, Adv. Organomet. Chem. 43 (1998) 197.
[16] B.M. Trost, Z.T. Ball, Synthesis (2005) 853.
[17] B.M. Trost, Science 254 (1991) 1471.
[18] D.A. Armitage, Organomet. Chem. 10 (1982) 86.
[19] J.L. Speier, Adv. Organomet. Chem. 17 (1979) 407.
[20] B.D. Karstedt, Ger. Offen. DE 1941411, (1970).
[21] B.D. Karstedt, Ger. Offen. DE 2307085, (1973).
[22] I.E. Marko, S. Sterin, O. Buisine, G. Mignani, P. Branlard, B. Tinant,
J.-P. Declercq, Science 298 (2002) 204.
[23] I.E. Marko, S. Sterin, O. Buisine, G. Berthon, G. Michaud, B. Tinant,
J.-P. Declercq, Adv. Synth. Catal. 346 (2004) 1429.
[24] J. Stein, L.N. Lewis, Y. Gao, R.A. Scott, J. Am. Chem. Soc. 121 (1999) 3693.
[25] O. Buisine, G. Berthon-Gelloz, J.-F. Briere, S. Sterin, G. Mignani, P. Branlard,
B. Tinant, J.-P. Declercq, I.E. Marko, Chem. Commun. (2005) 3856.
[26] J.W. Sprengers, M.J. Mars, M.A. Duin, K.J. Cavell, C.J. Elsevier, J. Organomet,
Chem 679 (2003) 149.
[27] S.E. Gibson, M. Rudd, Adv. Synth. Catal. 349 (2007) 781.
[28] W. Caseri, P.S. Pregosin, J. Organomet. Chem. 356 (1988) 259.
[29] W. Caseri, P.S. Pregosin, Organometallics 7 (1988) 1373.
[30] A.M. LaPointe, F.C. Rix, M. Brookhart, J. Am. Chem. Soc. 119 (1997) 906.
[31] X. Wang, H. Chakrapani, J.W. Madine, M.A. Keyerleber, R.A. Widenhoefer,
J. Org. Chem. 67 (2002) 2778.
Also in this case the reaction works best at low temperatures. It
can be run as low as 50 ꢁC, with perfect selectivity and 67% yield
(Table 7, entry 1). Higher temperatures reduce the yields as well as
the selectivity. The dimethylphenylsilane is less reactive compared
to the bis(trimethylsiloxy)methylsilane and we observed in general
lower yields.
4. Conclusion
We could show that platinum(II)-bis-NHC-complexes are
highly active and very stable catalysts for the hydrosilylation
of alkenes.
A fine-tuning of the catalytic activity of the
platinum(II)-bis-NHC-complexes is possible by variation of the
substituents on the imidazole ring. The most active catalyst of all
investigated platinum(II)-bis-NHC-complexes is 1,1-[Bis(3,30-(4-
methoxyphenyl)-1,10-1H-imidazolium-2,20-ylidene)methanediyl]
platinum(II)-di-chloride (5). The catalytic activity of complex 5 is
comparable to the catalytic activity of the Karstedt catalyst (1) and
higher than that of the corresponding platinum(0)-NHC-complex 2.
Complex 5 does not decompose to platinum black during the
reaction and therefore less by-products are formed, which is an
important advantage of catalyst 5 in comparison to the Karstedt
catalyst 1. The optimum conditions are 0.5 mol % catalyst 5 at
a reaction temperature of 50 ꢁC.
[32] M. Poyatos, A. Maisse-Francois, S. Bellemin-Laponnaz, L.H. Gade, Organome-
tallics 25 (2006) 2634.
[33] P.B. Glaser, T.D. Tilley, J. Am. Chem. Soc. 125 (2003) 13640.
[34] I. Ojima, T. Fuchikami, M. Yatabe, J. Organomet. Chem. 260 (1984) 335.
[35] B. Marciniec, C. Pietraszuk, Top. Organomet. Chem. 11 (2004) 197.
[36] C. Menozzi, P.I. Dalko, J. Cossy, Synlett (2005) 2449.
[37] K.D. Hesp, D. Wechsler, J. Cipot, A. Myers, R. McDonald, M.J. Ferguson,
G. Schatte, M. Stradiotto, Organometallics 26 (2007) 5430.
[38] R. Goikhman, D. Milstein, Chem. Eur. J. 11 (2005) 2983.
[39] A.M. Archer, M.W. Bouwkamp, M.-P. Cortez, E. Lobkovsky, P.J. Chirik, Organ-
ometallics 25 (2006) 4269.
[40] A.J. Chalk, J. Organometal. Chem. 21 (1970) 207.
[41] I. Hyder, M. Jimenez-Tenorio, M.C. Puerta, P. Valerga, Dalton Trans. (2007)
3000.
Acknowledgments
[42] S. Rendler, R. Froehlich, M. Keller, M. Oestreich, Eur. J. Org. Chem. (2008)
2582.
[43] C. Sui-Seng, L.F. Groux, D. Zargarian, Organometallics 25 (2006) 571.
[44] J.F. Jensen, B.Y. Svendsen, C.T.V. La, H.L. Pedersen, M. Johannsen, J. Am. Chem.
Soc. 124 (2002) 4558.
We are grateful to the “Fonds der Chemischen Industrie” and to
the “Konrad-Adenauer-Stiftung“ (S. A.) for their support of our
research.
[45] T. Hayashi, S. Hirate, K. Kitayama, H. Tsuji, A. Torii, Y. Uozumi, J. Org. Chem. 66
(2001) 1441.
[46] M. Rastaetter, A. Zulys, P.W. Roesky, Chem. Eur. J. 13 (2007) 3606.
[47] A.Z. Voskoboynikov, A.K. Shestakova, I.P. Beletskaya, Organometallics 20
(2001) 2794.
Appendix A. Supplementary material
CCDC 822864 contains the supplementary crystallographic data
[48] Y. Horino, T. Livinghouse, Organometallics 23 (2004) 12.