5. Iwabuchi, K., and I. Nagaoka. 2002. Lactosylceramide-enriched gly-
cosphingolipid signaling domain mediates superoxide generation
from human neutrophils. Blood. 100: 1454–1464.
6. Kusumi, A., Y. M. Shirai, I. Koyama-Honda, K. G. Suzuki, and
T. K. Fujiwara. 2010. Hierarchical organization of the plasma mem-
brane: investigations by single-molecule tracking vs. fluorescence
correlation spectroscopy. FEBS Lett. 584: 1814–1823.
24. Gorczynski, M. J., J. Huang, and S. B. King. 2006. Regio- and stereo-
specific syntheses and nitric oxide donor properties of (E)-9- and
(E)-10-nitrooctadec-9-enoic acids. Org. Lett. 8: 2305–2308.
25. Hang, H. C., E. J. Geutjes, G. Grotenbreg, A. M. Pollington, M. J.
Bijlmakers, and H. L. Ploegh. 2007. Chemical probes for the rapid
detection of fatty-acylated proteins in mammalian cells. J. Am.
Chem. Soc. 129: 2744–2745.
7. Iwabuchi, K., A. Prinetti, S. Sonnino, L. Mauri, T. Kobayashi, K.
Ishii, N. Kaga, K. Murayama, H. Kurihara, H. Nakayama, et al. 2008.
Involvement of very long fatty acid-containing lactosylceramide in
lactosylceramide-mediated superoxide generation and migration
in neutrophils. Glycoconj. J. 25: 357–374.
8. Sato, T., K. Iwabuchi, I. Nagaoka, Y. Adachi, N. Ohno, H. Tamura,
K. Seyama, Y. Fukuchi, H. Nakayama, F. Yoshizaki, et al. 2006.
Induction of human neutrophil chemotaxis by Candida albicans-
derived beta-1,6-long glycoside side-chain-branched beta-glucan. J.
Leukoc. Biol. 80: 204–211.
9. Ekyalongo, R. C., H. Nakayama, K. Kina, N. Kaga, and K. Iwabuchi.
2014. Organization and functions of glycolipid-enriched microdo-
mains in phagocytes. Biochim. Biophys. Acta. In press.
10. Bisson, R., and C. Montecucco. 1981. Photolabelling of membrane
proteins with photoactive phospholipids. Biochem. J. 193: 757–763.
11. Sonnino, S., V. Chigorno, D. Acquotti, M. Pitto, G. Kirschner, and
G. Tettamanti. 1989. A photoreactive derivative of radiolabeled
GM1 ganglioside: preparation and use to establish the involvement
of specific proteins in GM1 uptake by human fibroblasts in culture.
Biochemistry. 28: 77–84.
12. Mauri, L., S. Prioni, N. Loberto, V. Chigorno, A. Prinetti, and S.
Sonnino. 2004. Synthesis of radioactive and photoactivable gangli-
oside derivatives for the study of ganglioside-protein interactions.
Glycoconj. J. 20: 11–23.
13. Kabayama, K., T. Sato, K. Saito, N. Loberto, A. Prinetti, S. Sonnino,
M. Kinjo, Y. Igarashi, and J. Inokuchi. 2007. Dissociation of the
insulin receptor and caveolin-1 complex by ganglioside GM3 in
the state of insulin resistance. Proc. Natl. Acad. Sci. USA. 104:
13678–13683.
14. Ono, M., K. Handa, S. Sonnino, D. A. Withers, H. Nagai, and S.
Hakomori. 2001. GM3 ganglioside inhibits CD9-facilitated hapto-
tactic cell motility: coexpression of GM3 and CD9 is essential in the
downregulation of tumor cell motility and malignancy. Biochemistry.
40: 6414–6421.
15. Chigorno, V., M. Valsecchi, D. Acquotti, S. Sonnino, and G.
Tettamanti. 1990. Formation of a cytosolic ganglioside-protein
complex following administration of photoreactive ganglioside
GM1 to human fibroblasts in culture. FEBS Lett. 263: 329–331.
16. Fra, A. M., M. Masserini, P. Palestini, S. Sonnino, and K. Simons.
1995. A photo-reactive derivative of ganglioside GM1 specifically
cross-links VIP21-caveolin on the cell surface. FEBS Lett. 375: 11–14.
17. Palestini, P., M. Pitto, G. Tedeschi, A. Ferraretto, M. Parenti, J.
Brunner, and M. Masserini. 2000. Tubulin anchoring to glycolipid-
enriched, detergent-resistant domains of the neuronal plasma
membrane. J. Biol. Chem. 275: 9978–9985.
26. Aureli, M., S. Prioni, L. Mauri, N. Loberto, R. Casellato, M. G. Ciampa,
V. Chigorno, A. Prinetti, and S. Sonnino. 2010. Photoactivable
sphingosine as a tool to study membrane microenvironments in
cultured cells. J. Lipid Res. 51: 798–808.
27. Chigorno, V., P. Palestini, M. Sciannamblo, V. Dolo, A. Pavan, G.
Tettamanti, and S. Sonnino. 2000. Evidence that ganglioside en-
riched domains are distinct from caveolae in MDCK II and human
fibroblast cells in culture. Eur. J. Biochem. 267: 4187–4197.
28. Prinetti, A., V. Chigorno, G. Tettamanti, and S. Sonnino. 2000.
Sphingolipid-enriched membrane domains from rat cerebellar
granule cells differentiated in culture. A compositional study. J.
Biol. Chem. 275: 11658–11665.
29. Aureli, M., N. Loberto, P. Lanteri, V. Chigorno, A. Prinetti, and S.
Sonnino. 2011. Cell surface sphingolipid glycohydrolases in neuro-
nal differentiation and aging in culture. J. Neurochem. 116: 891–899.
30. Mehlen, P., S. Rabizadeh, S. J. Snipas, N. Assa-Munt, G. S. Salvesen,
and D. E. Bredesen. 1998. The DCC gene product induces apo-
ptosis by a mechanism requiring receptor proteolysis. Nature. 395:
801–804.
31. Iwabuchi, K., S. Yamamura, A. Prinetti, K. Handa, and S. Hakomori.
1998. GM3-enriched microdomain involved in cell adhesion and
signal transduction through carbohydrate-carbohydrate interac-
tion in mouse melanoma B16 cells. J. Biol. Chem. 273: 9130–9138.
32. Iwabuchi, K., K. Handa, and S. Hakomori. 1998. Separation of “gly-
cosphingolipid signaling domain” from caveolin-containing mem-
brane fraction in mouse melanoma B16 cells and its role in cell
adhesion coupled with signaling. J. Biol. Chem. 273: 33766–33773.
33. Prinetti, A., N. Marano, S. Prioni, V. Chigorno, L. Mauri, R.
Casellato, G. Tettamanti, and S. Sonnino. 2000. Association of Src-
family protein tyrosine kinases with sphingolipids in rat cerebellar
granule cells differentiated in culture. Glycoconj. J. 17: 223–232.
34. Prinetti, A., V. Chigorno, S. Prioni, N. Loberto, N. Marano, G.
Tettamanti, and S. Sonnino. 2001. Changes in the lipid turnover,
composition, and organization, as sphingolipid-enriched mem-
brane domains, in rat cerebellar granule cells developing in vitro.
J. Biol. Chem. 276: 21136–21145.
35. Haga, Y., K. Hatanaka, and S. I. Hakomori. 2008. Effect of lipid
mimetics of GM3 and lyso-GM3 dimer on EGF receptor tyrosine
kinase and EGF-induced signal transduction. Biochim. Biophys. Acta.
1780: 393–404.
36. Palestini, P., M. Masserini, S. Sonnino, A. Giuliani, and G. Tettamanti.
1990. Changes in the ceramide composition of rat forebrain gan-
gliosides with age. J. Neurochem. 54: 230–235.
37. Riboni, L., D. Acquotti, R. Casellato, R. Ghidoni, G. Montagnolo,
A. Benevento, L. Zecca, F. Rubino, and S. Sonnino. 1992. Changes
of the human liver GM3 ganglioside molecular species during ag-
ing. Eur. J. Biochem. 203: 107–113.
38. Suzaki, K. 1965. The pattern of mammalian brain gangliosides. 3.
Regional and developmental differences. J. Neurochem. 12: 969–979.
39. Aureli, M., R. Bassi, A. Prinetti, E. Chiricozzi, B. Pappalardi, V.
Chigorno, N. Di Muzio, N. Loberto, and S. Sonnino. 2012. Ionizing
radiations increase the activity of the cell surface glycohydrolases
and the plasma membrane ceramide content. Glycoconj. J. 29:
585–597.
18. Sonnino, S., V. Chigorno, M. Valsecchi, M. Pitto, and G. Tettamanti.
1992. Specific ganglioside-cell protein interactions: a study per-
formed with GM1 ganglioside derivative containing photoactivable
azide and rat cerebellar granule cells in culture. Neurochem. Int. 20:
315–321.
19. Loberto, N., S. Prioni, A. Prinetti, E. Ottico, V. Chigorno, D.
Karagogeos, and S. Sonnino. 2003. The adhesion protein TAG-1
has a ganglioside environment in the sphingolipid-enriched mem-
brane domains of neuronal cells in culture. J. Neurochem. 85: 224–233.
20. Prioni, S., L. Mauri, N. Loberto, R. Casellato, V. Chigorno, D.
Karagogeos, A. Prinetti, and S. Sonnino. 2004. Interactions be-
tween gangliosides and proteins in the exoplasmic leaflet of neu-
ronal plasma membranes: a study performed with a tritium-labeled
GM1 derivative containing a photoactivable group linked to the
oligosaccharide chain. Glycoconj. J. 21: 461–470.
40. Valaperta, R., V. Chigorno, L. Basso, A. Prinetti, R. Bresciani, A.
Preti, T. Miyagi, and S. Sonnino. 2006. Plasma membrane pro-
duction of ceramide from ganglioside GM3 in human fibroblasts.
FASEB J. 20: 1227–1229.
41. Levy, M., and A. H. Futerman. 2010. Mammalian ceramide syn-
thases. IUBMB Life. 62: 347–356.
21. Seino, K., K. Iwabuchi, N. Kayagaki, R. Miyata, I. Nagaoka,
A. Matsuzawa, K. Fukao, H. Yagita, and K. Okumura. 1998.
Chemotactic activity of soluble Fas ligand against phagocytes. J.
Immunol. 161: 4484–4488.
22. Yanagida, M., H. Nakayama, F. Yoshizaki, T. Fujimura, K. Takamori,
H. Ogawa, and K. Iwabuchi. 2007. Proteomic analysis of plasma
membrane lipid rafts of HL-60 cells. Proteomics. 7: 2398–2409.
23. Freitas, J. M., and L. M. Abrantes. 2005. Synthesis of long-chain
3-alkylpyrroles bearing terminal carboxy or amino groups. Helv.
Chim. Acta. 88: 2470–2478.
42. Imgrund, S., D. Hartmann, H. Farwanah, M. Eckhardt, R. Sandhoff,
J. Degen, V. Gieselmann, K. Sandhoff, and K. Willecke. 2009. Adult
ceramide synthase 2 (CERS2)-deficient mice exhibit myelin sheath
defects, cerebellar degeneration, and hepatocarcinomas. J. Biol.
Chem. 284: 33549–33560.
43. Pewzner-Jung, Y., O. Brenner, S. Braun, E. L. Laviad, S. Ben-Dor,
E. Feldmesser, S. Horn-Saban, D. Amann-Zalcenstein, C. Raanan,
T. Berkutzki, et al. 2010. A critical role for ceramide synthase 2 in
liver homeostasis: II. Insights into molecular changes leading to
hepatopathy. J. Biol. Chem. 285: 10911–10923.
140
Journal of Lipid Research Volume 56, 2015