A. Kumar, S. Kumar / Tetrahedron Letters 53 (2012) 2030–2034
2033
References and notes
1
2
3
800
600
400
200
1. (a) Gunnlaugsson, T.; Glynn, M.; Tocci, G. M.; Kruger, P. E.; Pfeffer, F. M. Coord.
Chem. Rev. 2006, 250, 3094–3117; (b) Callan, J. F.; de Silva, A. P.; Magri, D. C.
Tetrahedron 2005, 61, 8551–8588; (c) Kim, J. S.; Quang, D. T. Chem. Rev. 2007,
107, 3780–3799; (d) Kim, H. N.; Lee, M. H.; Kim, H. J.; Kim, J. S.; Yoon, J. Chem.
Soc. Rev. 2008, 37, 1465–1472; (e) Carol, P.; Sreejith, S.; Ajayaghosh, A. Chem.
Asian J. 2007, 2, 338–348; (f) Kaur, N.; Kumar, S. Tetrahedron 2011, 67, 9233–
9264; (g) Quang, D. T.; Kim, J. S. Chem. Rev. 2010, 110, 6280–6301; (h) Jung, J.
H.; Lee, J. H.; Shinkai, S. Chem. Soc. Rev. 2011, 40, 4464–4474.
2. Gutknecht, J. J. Membr. Biol. 1981, 61, 61–66.
3. (a) Boening, D. W. Chemosphere 2000, 40, 1335–1351; (b) Benoit, J. M.;
Fitzgerald, W. F.; Damman, A. W. Environ. Res. 1998, 78, 118–133.
4. (a) Lee, J. W.; Jung, H. S.; Kwon, P. S.; Kim, J. W.; Bartsch, R. A.; Kim, Y.; Kim, S.-
J.; Kim, J. S. Org. Lett. 2008, 10, 3801–3804; (b) Nolan, E. M.; Lippard, S. J. Chem.
Rev. 2008, 108, 3443–3480; (c) Lu, H.; Xiong, L.; Liu, H.; Yu, M.; Shen, Z.; Li, F.;
You, X. Org. Biomol. Chem. 2009, 7, 2554–2558; (d) Mello, J. V.; Finney, N. S. J.
Am. Chem. Soc. 2005, 127, 10124–10125; (e) Zhang, X.; Xiao, Y.; Qian, X. Angew.
Chem., Int. Ed. 2008, 47, 8025–8029; (f) Lee, M. H.; Wu, J. S.; Lee, J. W.; Jung, J.
H.; Kim, J. S. Org. Lett. 2007, 9, 2501–2504; (g) Zhou, Y.; Zhu, C.; Gao, Y. X.; You,
X.; Yao, C. Org. Lett. 2010, 12, 2566–2569; (h) Ko, S.-K.; Chen, X.; Yoon, J.; Shin, I.
Chem. Soc. Rev. 2011, 40, 2120–2130.
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14
pH
Figure 7. Effect of pH on fluorescence intensity of probes 1––3 (H2O: DMSO (9:1),
(points refer to the experimental results).
5. (a) Voutsadaki, S.; Tsikalas, G. K.; Klontzas, E.; Froudakis, G. K.; Katerinopoulos,
H. E. Chem. Commun. 2010, 46, 3292–3294; (b) Chen, T.; Zhu, W.; Xu, Y.; Zhang,
S.; Zhang, X.; Qian, X. Dalton Trans. 2010, 39, 1316–1320; (c) Descalzo, A. B.;
Martinez-Manez, R.; Radeglia, R.; Rurack, K.; Soto, J. J. Am. Chem. Soc. 2003, 125,
3418–3419; (d) Prodi, L.; Bargossi, C.; Montalti, M.; Zaccheroni, N.; Su, N.;
Bradshaw, J. S.; Izatt, R. M.; Savage, P. B. J. Am. Chem. Soc. 2000, 122, 6769–6770;
(e) Lioris, J. M.; Martinez-Manez, R.; Pardo, T.; Soto, J.; Padilla-Tosta, M. E. Chem.
Commun. 1998, 837; (f) Chen, Q.-Y.; Chen, C.-F. Tetrahedron Lett. 2005, 46, 165–
168; (g) Tian, M.; Ihmels, H. Eur. J. Org. Chem. 2011, 8, 4145–4153; (h) Cheng,
X.; Li, Q.; Li, C.; Qin, J.; Li, Z. Chem. Eur. J. 2011, 17, 7276–7281; (i)
Wanichacheva, N.; Setthakarn, K.; Prapawattanapol, N.; Hanmeng, O.; Lee, V.
S.; Grudpan, K. J. Luminescence 2012, 132, 35–40.
500
400
1+Hg2+
2+Hg2+
3+Hg2+
300
6. (a) Kim, J. S.; Choi, M. G.; Song, K. C.; No, K. T.; Ahn, S.; Chang, S.- K. Org. Lett.
2007, 9, 1129–1132; (b) Ha-Thi, M.-H.; Penhoat, M.; Michelet, V.; Leray, I. Org.
Biomol. Chem. 2009, 7, 1665–1673; (c) Sheng, R.; Wang, P.; Liu, W.; Wu, X.; Wu,
S. Sensors and Actuators B 2008, 128, 507–511; (d) Youn, N. J.; Chang, S. K.
Tetrahedron Lett. 2005, 46, 125–129; (e) Hsieh, Y.-C.; Chir, J.-L.; Wua, H.-H.;
Chang, P.-S.; Wu, A.-T. Carbohydr. Res. 2009, 344, 2236–2239; (f) Chen, Y.-B.;
Wanga, Y.-J.; Lin, Y.-J.; Hu, C.-H.; Chen, S.-J.; Chir, J.-L.; Wu, A.-T. Carbohydr. Res.
2010, 345, 956–959; (g) Chen, K.-H.; Lu, C.-Y.; Cheng, H.-J.; Chen, S.-J.; Hu, C.-
H.; Wu, A.-T. Carbohydr. Res. 2010, 345, 2557–2561.
7. (a) Hennrich, G.; Sonnenschein, H.; ReschGenger, U. J. Am. Chem. Soc. 1999, 121,
5073–5074; (b) Mello, J. V.; Finney, N. S. J. Am. Chem. Soc. 2005, 127, 10124–
10125; (c) Yang, H.; Zhou, Z.; Li, F.; Yi, T.; Huang, C. Inorg. Chem. Commun. 2007,
10, 1136–1139; (d) Yang, H.; Zhou, Z.-G.; Xu, J.; Li, F.-Y.; Yi, T.; Huang, C.-H.
Tetrahedron 2007, 63, 6732–6736; (e) Chem. Eur. J. 2010, 16, 14424–14432.
Near IR.; (f) Liu, Y.; Lv, X.; Zhao, Y.; Chen, M.; Liu, J.; Wang, P.; Guo, W. Dyes and
Pigments 2012, 92, 909–915.
8. (a) Wan, Y.; Niu, W.; Behof, W. J.; Wang, Y.; Boyle, P.; Gorman, C. B. Tetrahedron
2009, 65, 4293–4297; (b) Wang, J.; Qian, X. Org. Lett. 2006, 8, 3721–3724; (c)
Wang, J.; Qian, X.; Cui, J. J. Org. Chem. 2006, 71, 4308–4311; (d) Mu, H.; Gong, R.;
Ma, Q.; Sun, Y.; Fu, E. Tetrahedron Lett. 2007, 48, 5525–5529; (e) Lu, H.; Xiong,
L.; Liu, H.; Yu, M.; Shen, Z.; Li, F.; You, X. Org. Biomol. Chem. 2009, 7, 2554–2558;
(f) Chandrasekhar, V.; Pandey, M. D. Tetrahedron Lett. 2011, 52, 1938–1941; (g)
Lohani, C. R.; Kim, J. M.; Lee, K.-H. Tetrahedron 2011, 67, 4130–4136.
9. (a) Yang, Y.-K.; Yook, K.-J.; Tae, J. J. Am. Chem. Soc. 2005, 127, 16760–16761; (b)
Yang, X.-F.; Lia, Y.; Bai, Q. Analytica Chimica Acta 2007, 584, 95–100; (c) Lin, W.;
Cao, X.; Ding, Y.; Yuan, L.; Yu, Q. Org. Biomol. Chem. 2010, 8, 3618–3620.
10. (a) Hu, J.; Zhang, M.; Yua, L. B.; Ju, Y. Bioorg. Med. Chem. Lett. 2010, 20, 4342–
4345; (b) Ruan, Y.-B.; Maisonneuve, S.; Xie, J. Dyes and Pigments 2011, 90, 239–
244; (c) Thomas, K. G.; Thomas, K. J.; Das, S.; George, M. V. Chem. Commun.
1997, 6, 597–598; (d) Basheer, M. C.; Alex, S.; Thomas, K. G.; Suresh, C. H.; Das,
S. Tetrahedron 2006, 62, 605–610; (e) Liu, X.; Yang, X.; Peng, H.; Zhu, C.; Cheng,
Y. Tetrahedron Lett. 2011, 52, 2295–2298; (f) Liu, X.; Yang, X.; Fu, Y.; Zhu, C.;
Cheng, Y. Tetrahedron 2011, 67, 3181–3186.
200
100
0
2
3
4
5
6
7
8
pH
9
10 11 12 13 14
Figure 8. Effect of pH on fluorescence intensity of Hg2+ complexes of probes 1–3
(H2O:DMSO (9:1)), (points refer to the experimental results).
tunes the pH range for the practical sensing of Hg2+ ions i.e. probe 1
can detect Hg2+ within the pH range of 4–10, and probe 3 with
extended pH range of 4–11.5.
Thus, we have developed new anthroneamine based colorimet-
ric and fluorescent probes 1–3 for selective and sensitive Hg2+
detection in aqueous medium. The ability of these probes to func-
tion in un-buffered aqueous solution with linear and fast fluores-
cence response will be useful for the rapid and quantitative
detection of Hg2+ in environmental samples. Probes 1 and 3 find
their applicability over a broad pH range of 4–12 with lowest
detectable limits between 1 lM (0.2 ppm)––2 lM (0.4 ppm). The
presence of electronegative bromine increases the sensitivity ten
times for probe 2 toward Hg2+ with the lowest detection limit of
200 nM (40 ppb). Further, the effect of substituents and extension
of aromatic ring to increase the sensitivity toward Hg2+ ions is in
progress.
11. Anthroneamine (1): Dark yellow solid. Mp >250oC, HRMS (m/z +Na) = 285.0687,
(Theoretical (m/z + Na) = 285.0640), IR vmax (KBr) 1595, 1635, 1671, 2857,
3305, 3422. 1H NMR (DMSO-d6 + CDCl3, 300 MHz): d 6.97 (s, 2H, NH2), 7.47 (t,
J = 7.8 Hz, 1H, ArH), 7.57 (t, J = 7.5 Hz, 1H, ArH), 7.65 (d, J = 7.8 Hz, 1H, ArH),
7.83 (t, J = 7.8 Hz, 1H, ArH), 8.16 (d, J = 7.8 Hz, 1H, ArH), 8.46 (d, J = 7.8 Hz, 1H,
ArH), 8.64 (d, J = 8.1 Hz, 1H, ArH), 12.35 (s, 1H, NH); 13C NMR (CDCl3+TFA,
75 MHz): d 108.58, 112.37, 116.14, 119.82, 122.67, 125.82, 126.57, 127.02,
129.15, 129.66, 131.15, 135.05. Found: C, 73.31; H, 3.93; N, 10.72%. C20H18
N2O2 requires C, 73.27; H, 3.84; N, 10.68%.
Acknowledgments
We thank DST, New Delhi for the financial assistance and FIST;
UGC, New Delhi for CAS and fellowship to AK; CDRI Lucknow and
the IISc Bangalore for mass spectra.
12. 2,4-Dibromoanthroneamine (2): Dark brown solid. Mp >260 °C HRMS (m/z
+Na) = 440.8844, 442.8924, 444.8894 (1:2:1), (Theoretical (m/z
+
Na) = 440.8850), IR vmax (KBr) 1590, 1664, 2855, 3033, 3162, 3405. 1H NMR
(DMSO-d6, 300 MHz): d 7.54–7.59 (doublet merged with broad NH2 signal, 3H,
1ArH & NH2), 7.79 (t, J = 7.8 Hz, 1H, ArH), 7.99 (s, 1H, ArH), 8.21 (d, J = 7.8 Hz,
1H, ArH), 8.49 (d, J = 8.1 Hz, 1H, ArH), 9.78 (s,1H, NH). 13C NMR (DMSO-d6,
75 MHz): d 103.06, 112.74, 115.27, 117.42, 122.53, 122.79, 125.96, 126.90,
127.40, 128.31, 131.41, 133.11, 133.50, 139.32, 157.99, 180.56. Found: C,
45.82; H, 1.98; N, 6.72%. C20H18 N2O2 requires C, 45.75; H, 1.92; N, 6.67%.
Supplementary data
Supplementary data associated with this article can be found, in