10.1002/anie.201812926
Angewandte Chemie International Edition
COMMUNICATION
Further, direct evidence for a shrinking and expansion of the
cages upon addition of the short and long guest, respectively,
came from trapped ion mobility ESI-TOF mass spectrometry
(timsTOF), which indicates a smaller gas phase collisional cross
section for G2@C2P (701 Å2) than for G3@C2P (705 Å2), even in
a mixture of both host-guest complexes (Figure 5d and SI Figure
S27).[26] We repeated the CD experiment with azobenzene-based
guest G4,[27] either in its cis or trans photoisomeric form (Figure
5b). Remarkably, the effect of band intensity decrease/increase
could be reproduced and allows the differentiation between the
cis and the trans form of achiral azobenzene via CD spectroscopy,
keeping in mind that the free guest itself shows no CD effect. In
addition, observed deviations from the expected band shapes
were attributed to a certain degree of chirality transfer on the
azobenzene chromophore which – in contrast to guests G2 and
G3 – shows significant absorption around 360 nm.
crystallization experiments, Prof. W. Hiller (TU Do), Dr. M. John
(GAU Gö) for help with NMR spectroscopy and L. Schneider (TU
Do), C. Heitbrink, Dr. P. Janning (MPI Do) and Dr. H. Frauendorf
(GAU Gö) for ESI mass spectra. Diffraction data for DC2M was
collected at PETRA III, DESY a member of the Helmholtz
Association
(HGF).
The
authors
thank
Saravanan
Panneerselvam for assistance in using synchrotron beamline P11,
(I-20160736).[29]
Keywords: chirality • anion recognition • host-guest chemistry •
interpenetration • supramolecular chemistry
[1] a) R. Chakrabarty, P. S. Mukherjee, P. J. Stang, Chem. Rev. 2011, 111,
6810; b) M. Han, D. M. Engelhard, G. H. Clever, Chem. Soc. Rev. 2014, 43,
1848.
[2] a) S. Mukherjee, P. S. Mukherjee, Chem. Commun. 2014, 50, 2239; b) W.
M. Bloch, G. H. Clever, Chem. Commun. 2017, 53, 8506.
In summary, a new family of [Pd2L4] coordination cages based
on a chiral helicene backbone has been developed.[28] One of the
cages showed integrative chiral self-sorting, thus serving as an
example for the non-statistical formation of heteroleptic structures,
while another was found to discriminate chiral guests via differing
binding affinities to its enantiopure form. The strong circular
dichroism of the helicene backbone could further be exploited for
the size discrimination of achiral anionic guests by taking
advantage of modulating the system’s chiroptical properties upon
guest-induced changes of the helical pitch. Ion mobility mass
spectrometry was employed to support these findings. In addition,
the group of [Pd4L8] interpenetrated cages could be expanded by
an unprecedented chiral species, illustrated by its single crystal
X-ray structure. Further studies are underway to expand the guest
binding and recognition features and develop a system for
enantioselective catalysis inside confined environments.
[3] a) A. M. Castilla, W. J. Ramsay, J. R. Nitschke, Acc. Chem. Res. 2014, 47,
2063; b) L.-J. Chen, H.-B. Yang, M. Shionoya, Chem. Soc. Rev. 2017, 46,
2555; c) M. Pan, K. Wu, J.-H. Zhang, C.-Y. Su, Coord. Chem. Rev. 2019,
378, 333.
[4] a) Y. Tsunoda, K. Fukuta, T. Imamura, R. Sekiya, T. Furuyama, N.
Kobayashi, T. Haino, Angew. Chem. Int. Ed. 2014, 53, 7243; b) C. Gropp,
N. Trapp, F. Diederich, Angew. Chem. Int. Ed. 2016, 55, 14444.
[5] D. Beaudoin, F. Rominger, M. Mastalerz, Angew. Chem. Int. Ed. 2016, 55,
15599.
[6] a) C. J. Carrano, K. N. Raymond, J. Am. Chem. Soc. 1978, 100, 5371; b)
S. J. Lee, W. Lin, J. Am. Chem. Soc. 2002, 124, 4554; c) G. A. Hembury,
V. V. Borovkov, Y. Inoue, Chem. Rev. 2008, 108, 1; d) Y. Nishioka, T.
Yamaguchi, M. Kawano, M. Fujita, J. Am. Chem. Soc. 2008, 130, 8160; e)
C. Siering, J. Toräng, H. Kruse, S. Grimme, S. R. Waldvogel, Chem.
Commun. 2010, 46, 1625; f) C. Zhao, Q.-F. Sun, W. M. Hart-Cooper, A. G.
DiPasquale, F. D. Toste, R. G. Bergman, K. N. Raymond, J. Am. Chem.
Soc. 2013, 135, 18802; g) C. Gütz, R. Hovorka, C. Klein, Q.-Q. Jiang, C.
Bannwarth, M. Engeser, C. Schmuck, W. Assenmacher, W. Mader, F.
Topić et al., Angew. Chem. Int. Ed. 2014, 53, 1693.
[7] H. Jędrzejewska, A. Szumna, Chem. Rev. 2017, 117, 4863.
[8] a) M. A. Masood, E. J. Enemark, T. D. P. Stack, Angew. Chem. Int. Ed.
1998, 37, 928; b) A. Lützen, M. Hapke, J. Griep-Raming, D. Haase, W.
Saak, Angew. Chem. Int. Ed. 2002, 41, 2086; c) U. Kiehne, T. Weilandt, A.
Lützen, Org. Lett. 2007, 9, 1283; d) C. Maeda, T. Kamada, N. Aratani, A.
Osuka, Coord. Chem. Rev. 2007, 251, 274; e) G. Meyer-Eppler, F. Topić,
G. Schnakenburg, K. Rissanen, A. Lützen, Eur. J. Inorg. Chem. 2014,
2014, 2495; f) S. A. Boer, D. R. Turner, Chem. Commun. 2015, 51, 17375;
g) L.-L. Yan, C.-H. Tan, G.-L. Zhang, L.-P. Zhou, J.-C. Bünzli, Q.-F. Sun, J.
Am. Chem. Soc. 2015, 137, 8550; h) V. E. Pritchard, D. Rota Martir, S.
Oldknow, S. Kai, S. Hiraoka, N. J. Cookson, E. Zysman-Colman, M. J.
Hardie, Chemistry 2017, 23, 6290; i) T. Tateishi, T. Kojima, S. Hiraoka,
Commun Chem 2018, 1, 727.
Experimental Section
Cages C1 and C2 were formed by addition of [Pd(CH3CN)4](BF4)2
(0.5 eq.) to the corresponding ligands (racemic or enantiopure) in
dmso at 23 °C. Cage DC2 was formed after heating C2 in MeCN
at 75 °C for 2 weeks. Single crystals suitable for X-ray structure
determination were grown for L2P from dmso and for DC2M by
slow diffusion of Et2O into a L2M plus [Pd(CH3CN)4](PF6)2 mixture
in MeCN at 7 °C. CCDC 1558206 (L2P) and CCDC 1581540
(DC2M) contain the supplementary crystallographic data for this
paper. These data can be obtained free of charge from The
[9] L.-L. Yan, C.-H. Tan, G.-L. Zhang, L.-P. Zhou, J.-C. Bünzli, Q.-F. Sun, J.
Am. Chem. Soc. 2015, 137, 8550.
[10] D. Beaudoin, F. Rominger, M. Mastalerz, Angew. Chem. Int. Ed. 2017, 56, 1244.
[11] a) T. W. Kim, J.-I. Hong, M. S. Lah, Chem. Commun. 2001, 743; b) C. G.
Claessens, T. Torres, J. Am. Chem. Soc. 2002, 124, 14522; c) T. Weilandt,
U. Kiehne, G. Schnakenburg, A. Lützen, Chem. Commun. 2009, 2320; d)
C. S. Arribas, O. F. Wendt, A. P. Sundin, C.-J. Carling, R. Wang, R. P.
Lemieux, K. Wärnmark, Chem. Commun. 2010, 46, 4381.
[12] a) D. Rota Martir, D. Escudero, D. Jacquemin, D. B. Cordes, A. M. Z.
Slawin, H. A. Fruchtl, S. L. Warriner, E. Zysman-Colman, Chem. Eur. J.
2017, 23, 14358; b) X.-Z. Li, L.-P. Zhou, L.-L. Yan, D.-Q. Yuan, C.-S. Lin,
Q.-F. Sun, J. Am. Chem. Soc. 2017, 139, 8237.
Cambridge
Crystallographic
Data
Centre
via
[13] M. Frank, M. D. Johnstone, G. H. Clever, Chem. Eur. J. 2016, 22, 14104.
[14] A. Westcott, J. Fisher, L. P. Harding, P. Rizkallah, M. J. Hardie, J. Am.
Chem. Soc. 2008, 130, 2950.
Acknowledgements
[15] R. Weitzenböck, H. Lieb, Monatsh. Chem. 1912, 33, 549.
[16] a) M. Gingras, Chem. Soc. Rev. 2013, 42, 968; b) N. Saleh, C. Shen, J.
Crassous, Chem. Sci. 2014, 5, 3680; c) C.-F. Chen, Y. Shen, Helicene
Chemistry, Springer, Berlin, Heidelberg, 2017; d) K. Mori, T. Murase, M.
Fujita, Angew. Chem. Int. Ed. 2015, 54, 6847; e) J. R. Brandt, X. Wang, Y.
Yang, A. J. Campbell, M. J. Fuchter, J. Am. Chem. Soc. 2016, 138, 9743.
[17] a) T. Verbiest, S. Van Elshocht, M. Kauranen, L. Hellemans, J. Snauwaert, C.
Nuckolls, T. J. Katz, A. Persoons, Science 1998, 282, 913; b) T. Kaseyama,
S. Furumi, X. Zhang, K. Tanaka, M. Takeuchi, Angew. Chem. 2011, 123,
3768.
This work has been supported by the Deutsche Forschungs-
gemeinschaft (CL 489/2-2, RESOLV Cluster of Excellence EXC-
2033 – project number 390677874) and the European Research
Council through ERC Consolidator grant 683083 (RAMSES). We
thank Prof. U. Diederichsen, Prof. L. Ackermann and Prof. L.
Tietze (all Georg-August University Göttingen) for access to CD
and HPLC facilities. We further thank S. Löffler for support with
[18] a) A. Terfort, H. Görls, H. Brunner, Synthesis 1997, 1997, 79; b) J. M. Fox,
D. Lin, Y. Itagaki, T. Fujita, J. Org. Chem. 1998, 63, 2031.
This article is protected by copyright. All rights reserved.