M. Somei and F. Yamada, Nat. Prod. Rep., 2005, 22, 73; M. Bandini
and A. Eichholzer, Angew. Chem., Int. Ed., 2009, 48, 9608.
2 N. Yoda and N. Hirayama, J. Med. Chem., 1993, 36, 1461.
3 M. Goldbrunner, G. Loidl, T. Polossek, A. Mannschreck and
E. V. Angerer, J. Med. Chem., 1997, 40, 3524.
4 M. Bos, F. Jenck, J. R. Martin, J. L. Moreau, V. Mutel,
¨
A. J. Sleight and U. Widmer, Eur. J. Med. Chem., 1997, 32, 253.
5 C. A. Demerson, G. Santroch and L. G. Humber, J. Med. Chem., 1975,
18, 577; C. Farina, S. Gagliardi, P. Misiano, P. Celestini and F. Zunino,
PCT Int. Appl., WO 2005105213 A2, 2005; S.-A. Kaloustian,
N. Zhang, A. M. Venkatesan, T. S. Mansour, T. H. Nguyen and
J. T. Anderson, US Pat. Appl. Publ., US 20090192147, 2009.
Scheme
4 Tandem oxidative cyclization for the synthesis of
spirooxindoles.
sequence furnishing the corresponding 3-substituted oxazino-
indoles 1q and 1r, respectively, in good yields and diastereo-
selectivity. When 1,4-napthaquinone (8) was employed as the
Michael acceptor, in situ oxidation of the substituted oxazino-
indole was observed, thus regenerating the quinone moiety to
form the oxazinoindole 1s in good yield with respectable
diastereoselectivity favouring the cis isomer. It’s noteworthy
that iminium 9 (formed by reacting diethyl amine and formalin)
could also be employed in this one-pot synthesis to form the
biologically important grammine type oxazinoindole 1t in
commendable yield and diastereoselectivity. The formylation
at the C3 position could be accomplished employing triethyl-
orthoformate (10) as the electrophile precursor furnishing the
3-formylated oxazinoindole 1u in excellent yield and diastereo-
selectivity. It is pertinent to mention here that under the
conditions employed for effecting the formylation, formation of
the bis-indolyl methanes was not observed which is a problem in
many related addition of indoles to aldehydes and ketones.
Spirooxindoles are part structures of various biologically
important molecules and natural products.15 We envisioned that
elaboration of the oxazinoindole derivatives to spirooxindole
derivatives will further expand the scope and utility of this
strategy. Thus, the oxazinoindole 1a was saponified to form
the corresponding acid 11a. Alternatively, it was reduced to the
alcohol 12a using lithium aluminium hydride. Tandem oxidative
cyclization of the acid 11a using m-CPBA furnished the lactone
bearing spirooxindole 13a in good yields.16 Similarly, the alcohol
12a gave the oxa-spirooxindole derivative 14a in very good yields
(Scheme 4). The stereochemistry of the oxa-spirooxindole
derivative 14a was unambiguously ascertained based on the
NMR and the single crystal X-ray diffraction studies (see ESIw).
In summary, we have developed a general methodology for a
highly stereoselective synthesis of the N-fused oxazinoindoles
employing a TMSOTf mediated oxa-Pictet–Spengler reaction to
vinylogous carbonate. We have also demonstrated a novel
strategy for the 2,3-bis-functionalization of N-tethered indoles
leading to disubstituted oxazinoindoles via a one pot, tandem
oxa-Pictet–Spengler-electrophilic substitution reaction. Further,
the oxazinoindole derivatives were efficiently elaborated into the
oxa-spirooxindole derivatives using oxidative cyclization reaction.
We thank DST and CSIR, New Delhi for financial support.
We thank Mr Ramkumar of the X-ray facility of the Department
of Chemistry, IIT Madras for collecting the crystallographic data
and SAIF, IIT Madras for NMR data. We are grateful to CSIR,
New Delhi for the award of research fellowship to AMS.
6 For selected recent examples, see: S.-F. Wang and C.-P. Chuang,
Tetrahedron Lett., 1997, 38, 7597; M. Ishikura, W. Ida and
K. Yanada, Tetrahedron, 2006, 62, 1015; M.-L. Bennasar,
T. Roca and F. Ferrando, Org. Lett., 2004, 6, 759; K. Tsuboike,
D. J. Guerin, S. M. Mennen and S. J. Miller, Tetrahedron, 2004, 60,
7367; M. Bandini, A. Eichholzer, M. Monari, F. Piccinelli and
A. Umani-Ronchi, Eur. J. Org. Chem., 2007, 2917;
H. Siebeneicher, I. Bytschkov and S. Doye, Angew. Chem., Int.
Ed., 2003, 42, 3042; J. Liu, M. Shen, Y. Zhang, G. Li,
A. Khodabocus, S. Rodriguez, B. Qu, V. Farina,
C. H. Senanayake and B. Z. Lu, Org. Lett., 2006, 8, 3573;
J. Takaya, S. Udagawa, H. Kusama and N. Iwasawa, Angew.
Chem., Int. Ed., 2008, 47, 4906; A. Fayol, Y.-Q. Fang and
M. Lautens, Org. Lett., 2006, 8, 4203; A. K. Verma,
T. Kesharwani, J. Singh, V. Tandon and R. Larock, Angew.
Chem., Int. Ed., 2009, 48, 1138; Q. Cai, C. Zheng and S.-L. You,
Angew. Chem., Int. Ed., 2010, 49, 8666; K. Fuchibe, T. Kaneko,
K. Mori and T. Akiyama, Angew. Chem., Int. Ed., 2009, 48, 8070;
G. Abbiati, V. Canevari, S. Caimi and E. Rossi, Tetrahedron Lett.,
2005, 46, 7117; K.-L. Niels, B. Mikael, H. M. Matthias and K. Jan,
Synthesis, 2010, 4287 and references therein.
7 J. An, N.-J. Chang, L.-D. Song, Y.-Q. Jin, Y. Ma, J.-R. Chen and
W.-J. Xiao, Chem. Commun., 2011, 47, 1869.
8 For an excellent review on the oxa-Pictet–Spengler reaction, see:
E. L. Larghi and T. S. Kaufman, Synthesis, 2006, 187.
9 For selected examples, see: J.-K. Kobayashi, S.-I. Matsui,
K. Ogiso, S. Hayase, M. Kawatsura and T. Itoh, Tetrahedron,
2010, 66, 3917; A. C. Silvanus, S. Heffernan, D. J. Liptrot,
G. Kociok-Kohn, B. I. Andrews and D. R. Carbery, Org. Lett.,
¨
2009, 11, 1175 and references therein.
10 For selected examples, see: E. Lee, J. S. Tae, C. Lee and C. M. Park,
Tetrahedron Lett., 1993, 34, 4831; G. Matsuo, H. Kadohama and
T. Nakata, Chem. Lett., 2002, 148; P. A. Evans, S. Raina and
K. Ahsan, Chem. Commun., 2001, 2504; M. A. Leeuwenburgh,
R. E. Litjens, J. D. C. Codee, H. S. Overkleeft, G. A. Van der
´
Marel and J. H. Van Boom, Org. Lett., 2000, 2, 1275; M. P. Sibi,
K. Patil and T. R. Rheault, Eur. J. Org. Chem., 2004, 372;
T. K. Chakraborty, R. Samanta and K. Ravikumar, Tetrahedron
Lett., 2007, 48, 6389 and references therein.
11 D. A. Henderson, P. N. Collier, P. Gregoire, P. Rzepa, A. J. P.
White, J. N. Burrows and A. G. M. Barrett, J. Org. Chem., 2006,
71, 2434. For some selected examples of the Stetter reaction in the
synthesis of THF and THPs, see: E. Ciganek, Synthesis, 1995,
1311; S. A. Frank, D. J. Mergott and W. R. Roush, J. Am. Chem.
Soc., 2002, 124, 2404; M. S. Kerr, J. Read de Alaniz and T. Rovis,
J. Am. Chem. Soc., 2002, 124, 10298; M. S. Kerr and T. Rovis,
J. Am. Chem. Soc., 2004, 126, 8876; C. S. P. McErlean and
A. C. Willis, Synlett, 2009, 233.
12 C. Nussbaumer and G. Frater, Helv. Chim. Acta, 1987, 70, 396;
S. A. Kozmin, Org. Lett., 2001, 3, 755; D. J. Hart and C. E. Bennett,
Org. Lett., 2003, 5, 1499; M. S. Kwon, S. K. Woo, S. W. Na and
E. Lee, Angew. Chem., Int. Ed., 2008, 47, 1733.
13 S. J. Gharpure and S. K. Porwal, Synlett, 2008, 242; S. J. Gharpure
and S. K. Porwal, Tetrahedron, 2011, 67, 1216.
14 S. J. Gharpure and S. R. B. Reddy, Org. Lett., 2009, 11, 2519;
S. J. Gharpure, M. K. Shukla and U. Vijayasree, Org. Lett., 2009,
11, 5466; S. J. Gharpure and S. R. B. Reddy, Tetrahedron Lett.,
2010, 51, 6093.
15 For reviews, see: J. Esquivias, R. M. Arrayas and J. C. Carretero,
Angew. Chem., Int. Ed., 2006, 45, 629; M. Bandini, A. Melloni and
A. Umani-Ronchi, Angew. Chem., Int. Ed., 2004, 43, 550.
16 Y. Kobayashi, T. G. Cook and M. J. Buller, Heterocycles, 2007,
72, 163.
Notes and references
1 For reviews, see: G. R. Humphrey and J. T. Kuethe, Chem. Rev., 2006,
106, 2875; S. Cacchi and G. Fabrizi, Chem. Rev., 2005, 105, 2873;
M. Lounasmaa and A. Tolvanen, Nat. Prod. Rep., 2000, 17, 175;
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 3625–3627 3627