J. Xiao et al. / Journal of Fluorine Chemistry 99 (1999) 83±85
85
Table 3
1H NMR (CCl4) ꢀ (ppm), J (Hz) spectra of compounds 3
Compounds
1H NMR (CCl4), ꢀ (ppm), J (Hz)
3a
3b
3c
3d
3e
3f
7.60±7.93 (m, 5H, Ph)
7.37±7.50 (m, 4H, Ph); 2.58 (s, 3H, CH3)
7.56 (s, 3H, Ph); 2.60 (s, 3H, p-CH3); 2.30 (s, 3H, m-CH3)
7.63 (d, 2H, J 8.1 Hz, Ph); 7.48 (d, 2H, J 8.1 Hz, Ph)
7.26±7.82 (m, 3H, Ph)
7.83 (d, 2H, J 9.0 Hz, Ph); 7.47 (d, 2H, J 9.0 Hz, Ph)
8.59 (d, 2H, J 11.7 Hz, Ph); 7.87 (d, 2H, J 11.7 Hz, Ph)
7.55±8.46 (m, 4H, Ph)
3g
3h
3i
7.45 (d, 2H, J 9.0 Hz, Ph); 7.10 (d, 2H, J 9.0 Hz, Ph); 3.98 (s, 3H, CH3)
7.31±7.40 (m, 5H, Ph); 5.70±5.93 (m, 1H, CH); 2.15 (d, 3H, J 7.2 Hz, CH3)
7.25±7.51 (m, 5H, Ph); 4.89 (t, 2H, J 8.1 Hz, N±CH2); 3.60 (t, 2H, J 8.1 Hz, CH2±Ph)
7.16±8.32 (m, 7H, naphthalene±H)
3j
3k
3l
Table 4
Acknowledgements
Microanalysis data for compounds 3
The authors thank the National Science Foundation of
China (No. 29832052) for ®nancial support.
Products
Calculated (%)
Found (%)
C
C
H
N
H
N
3a
3b
3c
3d
3e
3f
44.87
47.38
49.54
38.65
33.95
32.79
37.08
37.08
44.27
49.59
49.59
54.55
2.36
3.09
3.74
1.62
1.07
1.38
1.56
1.56
2.89
3.75
3.75
2.67
26.16
24.55
23.21
22.54
19.80
19.12
27.03
27.03
22.95
23.13
23.13
21.21
44.28
47.07
49.61
38.15
34.14
32.63
37.19
36.71
44.49
49.59
49.32
54.50
2.16
2.75
3.55
1.50
1.05
1.21
1.38
1.33
2.89
3.58
3.63
2.49
26.42
25.07
23.29
22.44
20.14
19.33
27.50
27.38
23.15
23.35
23.24
21.35
References
[1] S.W. Huskey, R.R. Miller, S.H.L. Chiu, Drug. Metab. Dispos. 21
(1993) 792.
[2] K.S. Kim, L. Qian, J.E. Bird, K.E.J. Dickinson, S. Moreland, T.R.
Schaeffer, T.L. Waldron, C. Delaney, H.N. Weller, A.V. Miller, J.
Med. Chem. 36 (1993) 2335.
3g
3h
3i
[3] W. Mederski, D. Dorsch, N. Beier, P. Schelling, I. Leus, K.O. Minck,
Eur. Pat. (1993) 547 514.
3j
3k
3l
[4] M.E. Pierce, D.J. Carini, G.F. Huhn, G.J. Wells, J.F. Arnett, J. Org.
Chem. 58 (1993) 4642.
[5] J.W. Ellingboe, M. Nikaido, J.F. Bagli, Eur. Pat. (1993) 539 086.
[6] N.P. Peet, L.E. Baugh, S. Sunder, J.E. Lewis, E.H. Mathews, E.E.
Olberding, D.N. Shah, J. Med. Chem. 29 (1986) 2403.
[7] E. Makino, N. Iwasaki, N. Yagi, T. Ohashi, H. Kato, Y. Ito, H.
Azuma, Chem. Pharm. Bull. 38 (1990) 201.
EtOAc in petroleum ether v/v) to give 568 mg (94%) of pure
3i as a light yellowish oil (see Table 3).
[8] J. Bergman, H.C. Vanderplas, M. Simonyl, Heterocycles Bioorganic
Chemistry, RSC, Cambridge, 1991.
3.2. 1-a-naphthalene-5-trifluoromethyltetrazole (3l):
typical procedure
[9] B.H. Lipshutz, Chem. Rev. 86 (1986) 795.
[10] N. Ishikawa, Biologically Active Organofluorine Compounds, CMC,
Tokyo, 1990.
To an oven-dried two-necked 25 ml round-bottom ¯ask
®tted with a magnetic stirring bar and charged with dry N2
was added N-(a-naphthalene)-tri¯uoroacetimidoyl chloride
(858 mg, 3.05 mmol) and DMF (6 ml) and sodium azide
(200 mg, 3.05 mmol). The resulting mixture was then stir-
red at room temperature for 24 h. Completion of reaction
was monitored by TLC. The mixture was ®ltered and
concentrated to give a yellowish crude solid, recrystallized
from petroleum ether to give 562 mg (70%) of pure 3l (m.p.
102±1048C) (see Table 4).
[11] W.S. Huang, C.Y. Yuan, Z.Q. Wang, J. Fluorine Chem. 74 (1995)
279.
[12] W.S. Huang, C.Y. Yuan, Synthesis (1996) 511.
[13] K. Uneyama, O. Morimoto, F. Yamashita, Tetrahedron Lett. 36
(1989) 4821.
[14] G. Zeccni, Synlett (1992) 858.
[15] A.F. Hegonty, M. Mullane, J. Chem. Soc., Chem. Commun. (1984) 913.
[16] W. Carpenter, A. Haymaker, D.W. More, J. Org. Chem. 31 (1966) 789.
[17] K. Tamura, H. Mizukami, K. Maeda, H. Watanabe, K. Uneyama, J.
Org. Chem. 58 (1993) 32.