1260
S.E. Lyubimov et al. / Polyhedron 30 (2011) 1258–1261
(Table 2, entries 3, 4). During the hydrogenation of substrates
7b–c, the same trends were observed. In general, HFIP leads to
an important increase in the enantioselectivity compared to
i-PrOH, and the use of higher temperature results in decrease in
the enantioselectivity (Table 2, entries 5–12). Concerning the steric
effect of the substrates, the best enantioselectivity (85% ee) was
obtained with enamide 7a containing less sterically demanding
methyl substituent (R1).
4. Conclusions
Scheme 4. Rh-catalyzed asymmetric hydrogenation of b-dehydroamino acids
derivatives.
In conclusion, we have prepared a novel carborane-containing
amidophosphite ligand for the use in asymmetric catalysis. The li-
gand proved to be efficient in the Rh-catalyzed asymmetric hydro-
genation of a- and b-dehydroamino acid derivatives (up to 93% ee).
Importantly, we have shown that increase of the temperature from
be noted, that the geometrical isomers of the b-dehydroamino
acid derivatives show different selectivity in metal-catalyzed
hydrogenations. In general, an (E)-isomer hydrogenated with
higher enantioselectivity than the corresponding (Z)-isomer [9].
Nevertheless, the known synthetic protocols for the synthesis of
the b-dehydroamino acid derivatives similar to 7a–c result in the
formation of (Z)-isomer as a major product [27,33–35]. Therefore,
the development of a catalytic system exhibiting high enantiose-
lectivity for (Z)-b-dehydroamino acid derivatives is important.
Firstly, we have examined the hydrogenation of ethyl (Z)-3-ace-
toamido-2-butenoate (7a) in i-PrOH at 20 and 50 °C under
40 atm of H2 pressure. In the both cases nearly racemic product
8a was observed despite complete conversion (Table 2, entries 1,
2). In contrast to the reaction in i-PrOH, the hydrogenation in the
more acidic alcohol – 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP)
proceeded completely with 85% ee at 20 °C (Table 2, entry 3). It
should be noted, that (Z)-b-(acylamino)acrylates have intramolec-
ular hydrogen bond between the N–H of acylamide group and the
carbonyl oxygen of the ester, which prevents the desired bidentate
coordination of the substrate to the metal and the use of strongly
acidic HFIP may help to break down the hydrogen bond and thus
allow the olefin to coordinate at the metal center for further selec-
tive hydrogenation step [27,33,36,37]. Taking into account that
HFIP can form stronger hydrogen bonds than other alcohols, the
intermolecular hydrogen bond between the substrate and HFIP
should be the preferred structure, compared to i-PrOH [38,39]. To
achieve a higher reactivity the temperature was raised from 20
to 50 °C. In this case, complete conversion of 7a was observed in
3 h but product 8a was obtained with lower enantioselectivity
20 to 50 °C results in better reaction rate and enantioselectivity in
the Rh-catalyzed asymmetric hydrogenation of
a-dehydroamino
acid derivatives. In the hydrogenation of the b-dehydroamino acid
derivatives the use of acidic HFIP and lower temperature led to an
important increase in the enantioselectivity.
References
[1] N.W. Boaz, S.E. Large, J.A. Ponasik, M.K. Moore, T. Barnette, W.D. Nottingham,
Org. Process Res. Dev. 9 (2005) 472.
[2] T. Otani, M. Briley, J. Pharm. Sci. 70 (1981) 464.
[3] T. Yamazaki, J. Haga, T. Kitazume, Bioorg. Med. Chem. Lett. 1 (1991) 271.
[4] F. von Nussbaum, P. Spiteller, in: C. Schmuck, H. Wennemers (Eds.), Highlights
in Bioorganic Chemistry: Methods and Application, Wiley-VCH, Weinheim,
2004.
[5] J. Liu, Y. Wang, Y. Sun, D. Marshall, S. Miao, G. Tonn, P. Anders, J. Tocker, H.L.
Tang, J. Medina, Bioorg. Med. Chem. Lett. 19 (2009) 6840.
[6] W. Liu, A. Brock, S. Chen, S. Chen, P.G. Schultz, Nat. Methods 4 (2007) 239.
[7] R.P. Cheng, S.H. Gellman, W.F. DeGrado, Chem. Rev. 101 (2001) 3219.
[8] D. Seebach, J. Gardiner, Acc. Chem. Res. 41 (2008) 1366.
[9] B. Weiner, W. Szymanski, D.B. Janssen, A.J. Minnaard, B.L. Feringa, Chem. Soc.
Rev. 39 (2010) 1656.
[10] I. Ojima, Catalytic Asymmetric Synthesis, second ed., Wiley-VCH, New York,
2000.
[11] A. Boerner, Phosphorus Ligands in Asymmetric Catalysis, Wiley-VCH,
Weinheim, 2008.
[12] W. Tang, X. Zhang, Chem. Rev. 103 (2003) 3029.
[13] C. Bruneau, J.-L. Renaud, T. Jerphagnon, Coord. Chem. Rev. 252 (2008) 532.
[14] J.F. Teichert, B.L. Feringa, Angew. Chem., Int. Ed. 49 (2010) 2486.
[15] M.T. Reetz, Angew. Chem., Int. Ed. 47 (2008) 2556.
[16] L. Eberhardt, D. Armspach, J. Harrowfield, D. Matt, Chem. Soc. Rev. 37 (2008)
839.
[17] S.E. Lyubimov, V.A. Davankov, E.E. Said-Galiev, A.R. Khokhlov, Catal. Commun.
9 (2008) 1851.
[18] M.T. Reetz, A. Meiswinkel, G. Mehler, K. Angermund, M. Graf, W. Thiel, R.
Mynott, D.G. Blackmond, J. Am. Chem. Soc. 127 (2005) 10305.
[19] S.E. Lyubimov, A.A. Tyutyunov, V.N. Kalinin, E.E. Said-Galiev, A.R. Khokhlov,
P.V. Petrovskii, V.A. Davankov, Tetrahedron Lett. 48 (2007) 8217.
[20] S.E. Lyubimov, V.N. Kalinin, A.A. Tyutyunov, V.A. Olshevskaya, Y.V.
Dutikova, C.S. Cheong, P.V. Petrovskii, A.S. Safronov, V.A. Davankov, Chirality
21 (2009) 2.
[21] S.E. Lyubimov, I.V. Kuchurov, A.A. Tyutyunov, P.V. Petrovskii, V.N. Kalinin, S.G.
Zlotin, V.A. Davankov, E. Hey-Hawkins, Catal. Commun. 11 (2010) 419.
[22] S.E. Lyubimov, V.A. Davankov, K.N. Gavrilov, T.B. Grishina, E.A. Rastorguev, A.A.
Tyutyunov, T.A. Verbitskaya, V.N. Kalinin, E. Hey-Hawkins, Tetrahedron Lett.
51 (2010) 1682.
[23] G. Francio, C. Arena, F. Faraone, C. Graiff, M. Lanfranchi, A. Tiripicchio, Eur. J.
Inorg. Chem. (1999) 1219.
[24] L.I. Zakharkin, V.N. Kalinin, V.V. Gedymin, J. Organomet. Chem. 16 (1969)
371.
[25] H. Hoshina, H. Tsuru, K. Kubo, T. Igarashi, T. Sakurai, Heterocycles 53 (2000)
2261.
[26] S.E. Lyubimov, I.V. Kuchurov, V.A. Davankov, S.G. Zlotin, J. Supercritical Fluids
50 (2009) 118.
Table 2
Asymmetric hydrogenation of b-dehydroamino acids derivatives.a
Entry
Substrate
Solvent
T (°C)
t (h)
Conversion (%)b
ee (%)
1
2
3
4
5
6
7
8
7a
7a
7a
7a
7b
7b
7b
7b
7c
7c
7c
7c
i-PrOH
i-PrOH
HFIP
20
50
20
50
20
50
20
50
20
50
20
50
12
3
12
3
12
3
12
3
12
3
12
3
100
100
100
100
100
100
100
100
84
5c
2c
85c
78c
34d
31d
69d
56d
9e
HFIP
i-PrOH
i-PrOH
HFIP
HFIP
9
i-PrOH
i-PrOH
HFIP
10
11
12
100
100
100
1e
46e
42e
HFIP
a
b
c
Substrate/[Rh(COD)2]BF4/ligand = 1.0/0.01/0.02, 40 atm H2.
Determined by 1H NMR spectroscopy.
Determined by HPLC (Chiralcel OJ–H, 250 ꢁ 4.6 mm column, 95/5 hexane/i-
[27] S. Lee, Y.J. Zhang, Org. Lett. 4 (2002) 2429.
[28] T.V. RajanBabu, T.A. Ayers, G.A. Halliday, K.K. You, J.C. Calabrese, J. Org. Chem.
62 (1997) 6012.
[29] M. van den Berg, A. Minnaard, R. Haak, M. Leeman, E. Schudde, A. Meetsma, B.
Feringa, A. de Vries, E.P. Maljaars, C. Willans, D. Hyett, J. Boogers, H.
Henderickx, J. de Vries, Adv. Synth. Catal. 345 (2003) 308.
[30] S.E. Lyubimov, V.A. Davankov, N.M. Loim, L.N. Popova, P.V. Petrovskii, P.M.
Valetskii, K.N. Gavrilov, J. Organomet. Chem. 691 (2006) 5992.
PrOH, 1.0 mL/min, 219 nm).
d
Determined by HPLC (Chiralpak AD, 250 ꢁ 4.6 mm column, 95/5 hexane/i-
PrOH, 0.8 mL/min, 219 nm).
e
Determined by HPLC (Chiralcel OD–H, 250 ꢁ 4.6 mm column, 9/1 hexane/i-
PrOH, 1.0 mL/min, 219 nm).