Journal of Materials Chemistry B
Paper
15 A. A. Beharry, S. Lacoste, T. R. O’Connor and E. T. Kool,
J. Am. Chem. Soc., 2016, 138, 3647–3650.
16 F. Wang, Y. Zhu, L. Zhou, L. Pan, Z. Cui, Q. Fei, S. Luo,
D. Pan, Q. Huang, R. Wang, C. Zhao, H. Tian and C. Fan,
Angew. Chem., Int. Ed., 2015, 54, 7349–7353.
NTR and hNQO1, has been developed for the first time. The
CNN probe exhibits high sensitivity, excellent selectivity and
good biocompatibility. In the presence of both NTR and hNQO1,
the fluorescence of the CNN probe was significantly enhanced
via an in situ generated coumarin dye, enabling the CNN probe
to distinguish between cancer cells and normal cells due to the
notably high endogenous levels of NTR and hNQO1 in these
cancer cells. We thus anticipate that the CNN probe has
potential application for identifying cancer at the cellular level
during early stages, and can provide a simple and convenient
new method for the early diagnosis of cancer. However, the
relatively short emission wavelength is a potential limitation of
this probe. We are currently working to develop near-infrared
dual-responsive probes for in vivo applications.
17 X. Zhen, J. Zhang, J. Huang, C. Xie, Q. Miao and K. Pu,
Angew. Chem., Int. Ed., 2018, 57, 7804–7808.
18 X. Chen, D. Lee, S. Yu, G. Kim, S. Lee, Y. Cho, H. Jeong,
K. T. Nam and J. Yoon, Biomaterials, 2017, 122, 130–140.
19 H. Zhang, J. Fan, J. Wang, B. Dou, F. Zhou, J. Cao, J. Qu,
Z. Cao, W. Zhao and X. Peng, J. Am. Chem. Soc., 2013, 135,
17469–17475.
20 K. Gu, Y. Xu, H. Li, Z. Guo, S. Zhu, S. Zhu, P. Shi, T. D. James,
H. Tian and W. H. Zhu, J. Am. Chem. Soc., 2016, 138,
5334–5340.
21 Y. Jiao, J. Yin, H. He, X. Peng, Q. Gao and C. Duan, J. Am.
Chem. Soc., 2018, 140, 5882–5885.
22 Z. R. Dai, G. B. Ge, L. Feng, J. Ning, L. H. Hu, Q. Jin,
D. D. Wang, X. Lv, T. Y. Dou, J. N. Cui and L. Yang, J. Am.
Chem. Soc., 2015, 137, 14488–14495.
Conflicts of interest
There are no conflicts to declare.
23 Z. R. Dai, L. Feng, Q. Jin, H. L. Cheng, Y. Li, J. Ning, Y. Yu,
G. B. Ge, J. N. Cui and L. Yang, Chem. Sci., 2017, 8, 2795–2803.
24 J. Ning, W. Wang, G. Ge, P. Chu, F. Long, Y. Yang, Y. Peng,
L. Feng, X. Ma and T. D. James, Angew. Chem., Int. Ed., 2019,
58, 9959–9963.
25 J. Ning, T. Liu, P. Dong, W. Wang, G. Ge, B. Wang, Z. Yu,
L. Shi, X. Tian, X. Huo, L. Feng, C. Wang, C. Sun, J. Cui,
T. D. James and X. Ma, J. Am. Chem. Soc., 2019, 141,
1126–1134.
26 M. C. Hung, G. B. Mills and D. Yu, Nat. Med., 2009, 15,
246–247.
27 W. R. Wilson and M. P. Hay, Nat. Rev. Cancer, 2011, 11,
393–410.
28 D. Siegel, C. Yan and D. Ross, Biochem. Pharmacol., 2012, 83,
1033–1040.
29 X. Cui, L. Li, G. Yan, K. Meng, Z. Lin, Y. Nan, G. Jin and
C. Li, BMC Cancer, 2015, 15, 244.
30 H. W. Liu, X. B. Zhang, J. Zhang, Q. Q. Wang, X. X. Hu,
P. Wang and W. Tan, Anal. Chem., 2015, 87, 8896–8903.
31 K. H. Gebremedhin, Y. Li, Q. Yao, M. Xiao, F. Gao, J. Fan, J. Du,
S. Long and X. Peng, J. Mater. Chem. B, 2019, 7, 408–414.
32 Y. Liu, L. Teng, L. Chen, H. Ma, H. W. Liu and X. B. Zhang,
Chem. Sci., 2018, 9, 5347–5353.
Acknowledgements
This work was supported by the National Natural Science
Foundation of China (21874085, 21535004, 91753111 and
21775091) and the Key Research and Development Program
of Shandong Province (2018YFJH0502).
Notes and references
1 R. L. Siegel, K. D. Miller and A. Jemal, Ca-Cancer J. Clin.,
2018, 68, 7–30.
2 F. Bray, A. Jemal, N. Grey, J. Ferlay and D. Forman, Lancet
Oncol., 2012, 13, 790–801.
3 G. Blum, G. Von Degenfeld, M. J. Merchant, H. M. Blau and
M. Bogyo, Nat. Chem. Biol., 2007, 3, 668–677.
4 C. A. K. Borrebaeck, Nat. Rev. Cancer, 2017, 17, 199–204.
5 A. De Luca, F. Sanna, M. Sallese, C. Ruggiero, M. Grossi,
P. Sacchetta, C. Rossi, V. De Laurenzi, C. Di Ilio and B. Favaloro,
Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 18628–18633.
6 I. Csiki, K. Yanagisawa, N. Haruki, S. Nadaf, J. D. Morrow,
D. H. Johnson and D. P. Carbone, Cancer Res., 2006, 66,
143–150.
33 A. Chevalier, Y. Zhang, O. M. Khdour, J. B. Kaye and
S. M. Hecht, J. Am. Chem. Soc., 2016, 138, 12009–12012.
34 X. Tian, Z. Li, Y. Sun, P. Wang and H. Ma, Anal. Chem., 2018,
90, 13759–13766.
35 R. B. P. Elmes, Chem. Commun., 2016, 52, 8935–8956.
36 J. Zheng, Y. Shen, Z. Xu, Z. Yuan, Y. He, C. Wei, M. Er, J. Yin
and H. Chen, Biosens. Bioelectron., 2019, 119, 141–148.
37 S. U. Hettiarachchi, B. Prasai and R. L. McCarley, J. Am.
Chem. Soc., 2014, 136, 7575–7578.
7 G. Powis and D. L. Kirkpatrick, Curr. Opin. Pharmacol., 2007,
7, 392–397.
8 Q. Ma and A. Y. Lu, Chem. Res. Toxicol., 2003, 16, 249–260.
9 D. Asanuma, M. Sakabe, M. Kamiya, K. Yamamoto, J. Hiratake,
M. Ogawa, N. Kosaka, P. L. Choyke, T. Nagano, H. Kobayashi
and Y. Urano, Nat. Commun., 2015, 6, 6463.
10 J. V. Frangioni, J. Clin. Oncol., 2008, 26, 4012–4021.
11 J. Zhang, X. Chai, X. P. He, H. J. Kim, J. Yoon and H. Tian,
Chem. Soc. Rev., 2019, 48, 683–722.
38 Q. A. Best, A. E. Johnson, B. Prasai, A. Rouillere and
R. L. McCarley, ACS Chem. Biol., 2016, 11, 231–240.
39 B. Prasai, W. C. Silvers and R. L. McCarley, Anal. Chem.,
2015, 87, 6411–6418.
12 R. Weissleder and M. J. Pittet, Nature, 2008, 452, 580–589.
13 H. Kobayashi, M. Ogawa, R. Alford, P. L. Choyke and
Y. Urano, Chem. Rev., 2010, 110, 2620–2640.
14 Y. Urano, Curr. Opin. Chem. Biol., 2012, 16, 602–608.
6826 | J. Mater. Chem. B, 2019, 7, 6822--6827
This journal is ©The Royal Society of Chemistry 2019