of 24 ppb for Ru) confirms the retention of ruthenium within
the HAp matrix (no Ru passes into the solution during the
suction filtration). A control experiment was also performed to
show that the hydrogenation of benzene is completely stopped
by the removal of Ru(0)/HAp from the reaction solution.
In summary, Ru(0)/HAp could be reproducibly prepared
from readily available reagents following the procedure
reported herein. They exhibit exceptional catalytic activity in
the hydrogenation of aromatics under mild conditions and
provide a record catalytic lifetime (TTO = 192 600) in
the hydrogenation of neat benzene at 25 ꢀ 0.1 1C and
42 ꢀ 1 psig initial H2 pressure. Moreover, Ru(0)/HAp catalyzed
hydrogenation of neat benzene at room temperature is
‘‘relatively green’’ in terms of its environmental impact as it
fulfils 7 of the 12 requirements of green chemistry27 including
that (i) it is 100% selective and minimizes by-products or
waste, (ii) it maximizes the incorporation of all reactants into
the products, (iii) it is solventless (i.e., uses neat aromatics as
the substrate/solvent), (iv) it requires relatively low energy as it
occurs under mild conditions of 25.0 ꢀ 0.1 1C and r3 atm
pressure, (v) it is catalytic not stoichiometric, (vi) it does not
use any blocking, protecting/deprotecting group, (vii) real-
time monitoring is easy by measuring the H2 uptake, 1H NMR
or GC-analysis, for example. The high catalytic activity,
easy preparation, isolability, bottleability, and reusability of
Ru(0)/HAp raise the prospect of using this type of simply
prepared material for the hydrogenation of aromatics in industrial
applications as well as in small scale organic synthesis.
2003, 125, 4325; H. B. Pan and C. M. Wai, J. Phys. Chem. C, 2009,
113, 19782; I. S. Park, M. S. Kwon, N. Kim, J. S. Lee, K. Y. Kang
and J. Park, Chem. Commun., 2005, 5667.
¨
6 M. Zahmakiran and S. Ozkar, Langmuir, 2008, 24, 7065.
7 J. C. Elliot, Structure and Chemistry of Apatites and Other Calcium
Orthophosphates, Elsevier, Amsterdam, 1994; S. Sugiyama,
T. Minami, H. Hayashi, M. Tanaka, N. Shigemoto and
J. B. Moffat, J. Chem. Soc., Faraday Trans., 1996, 92, 293.
8 L. C. Palmer, C. J. Newcomb, S. R. Kaltz, E. D. Spoerke and
S. I. Stupp, Chem. Rev., 2008, 108, 4754.
9 M. J. Mura-Galelli, J. C. Voegel, S. Behr, E. F. Bres and P. Schaaf,
Proc. Natl. Acad. Sci. U. S. A., 1991, 88, 5557.
10 J. Reichert and J. G. P. Binner, J. Mater. Sci., 1996, 31, 1231.
11 For the use of transition metal exchanged hydroxyapatites as
catalysts in various organic transformations see the following
excellent review: K. Kaneda and T. Mizugaki, Energy Environ.
Sci., 2009, 2, 655 and references cited therein.
12 K. Mori, T. Hara, T. Mizugaki, K. Ebitani and K. Kaneda, J. Am.
Chem. Soc., 2004, 126, 10657.
13 C.-M. Ho, W.-Y. Yu and C.-M. Che, Angew. Chem., Int. Ed., 2004,
43, 3303.
14 T. Mitsudome, S. Arita, H. Mori, T. Mizugaki, K. Jitsukawa and
K. Kaneda, Angew. Chem., Int. Ed., 2008, 47, 7398.
15 Y. Liu, H. Tsunoyama, T. Akita and T. Tsukuda, Chem. Commun.,
2010, 46, 550.
16 B. C. Gates, Chem. Rev., 1995, 95, 511.
¨
17 M. Zahmakiran, Y. Tonbul and S. Ozkar, J. Am. Chem. Soc.,
2010, 132, 6541.
18 See ESI for details of the methodw.
19 Che and co-workers have reported the preparation of ruthenium(0)
nanoparticles supported on hydroxyapatite by the immobilization
of acetate stabilized ruthenium(0) nanoparticles without making
any attempt to remove the acetate group (see ref. 13). Therefore,
the catalyst has not been well defined.
20 S. Papp, J. Sze
16, 1674; M. Boutros, A. Denicourt-Nowicki, A. Roucoux,
L. Gengembre, P. Beaunier, A. Gedeon and F. Launay, Chem.
l, A. Oszko and I. Dekany, Chem. Mater., 2004,
´ ´ ´ ´
´
´
Commun., 2008, 2920; Zeolite Molecular Sieves, ed. D. W. Breck,
Wiley, New York, 1984.
Notes and references
1 R. C. Larock, Comprehensive Organic Transformations,
Wiley-VCH, New York, 1999; R. A. Sheldon and J. K. Kochi,
Metal Catalyzed Oxidation of Organic Compounds, Academic,
New York, 1981.
21 Using the equation N = N0pV/101.1, where N0 = 6.022 ꢃ 1023
,
p = 12.2 g cmꢁ3 and V = (4/3)p(D/2)3, the numbers of metal
atoms in the spherical 2.4 and 2.9 nm ruthenium(0) nanoclusters
were estimated to be 525 and 928, respectively.
2 R. L. Augustine, Heterogeneous Catalysis for the Synthetic
Chemistry, Marcel Dekker, New York, 1996.
22 C. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder and
G. E. Muilenberg, in Handbook of X-ray Photoelectron Spectro-
scopy, Physical Electronic Division, Perkin-Elmer, 1979, vol. 55,
p. 344; K. W. Park, J. H. Choi, B. K. Kwon, S. A. Lee, Y. E. Sung,
H. Y. Ha, S. A. Hong, H. Kim, S. A. Lee, Y. A. Sung, H. Y. Ha,
S. A. Hong, H. Kim and A. Wieckowski, J. Phys. Chem. B, 2002,
106, 1869.
3 A SciFinder literature search confirms that ca. 95% of the reports
of benzene hydrogenation catalysis employ high temperature
and/or high pressure with only 5% (90 of >1900) hits refining
according to the terms ‘‘benzene hydrogenation at room temperature’’.
Seven of the 95 hits report the complete (100%) hydrogenation of
neat benzene without side products at room temperature and they
were tabulated in Table ESI-1 in the Electronic Supplementary
Informationw.
4 J. Schulz, H. Patin and A. Roucoux, Chem. Commun., 1999, 535;
J. Schulz, H. Patin and A. Roucoux, Chem.–Eur. J., 2000, 6, 618;
A. Roucoux, J. Schulz and H. Patin, Adv. Synth. Catal., 2003, 345,
222; V. Mevellec, E. Ramirez, K. Phillippot, B. Chaudret and
A. Roucoux, Adv. Synth. Catal., 2004, 346, 72; A. Nowicki,
Y. Zhong, B. Leger, J. P. Rolland, H. Bricout, E. Monflier and
A. Roucoux, Chem. Commun., 2006, 296; V. Mevellec, A. Nowicki,
A. Roucoux, C. Dujardin, P. Granger, E. Payen and K. Phillippot,
New J. Chem., 2006, 30, 1214.
23 S. Storck, H. Bretinger and W. F. Maier, Appl. Catal., A, 1998,
174, 137.
24 The TOF and TTO reported herein are those typically defined as
TOF = (mol of H2 consumed)/(mol of catalyst)/time; TTO =
(TOF)(time). That is, the TOF and TTO values reported are not
corrected for the amount of metal that is on the surface of the
catalyst and/or the actual number of active sites. The initial TOF
value refers to the conversion of substrate within the first hour.
25 The presence of methyl substituents on the benzene ring has been
shown to stabilize the adsorbed species (p-complex with a higher
energy barrier) toward hydrogenation: J. J. Spivey, Catalysis, RSC,
Cambridge, 2002, vol. 16.
5 M. H. Seeberger and R. A. Jones, J. Chem. Soc., Chem. Commun.,
1985, 373; Z. Duan, A. P. Sylwester and M. J. Hampden-Smith,
Chem. Mater., 1992, 4, 1146; J. Huang, T. Jiang, B. Han, W. Wu,
Z. Liu, Z. Xie and J. Zhang, Catal. Lett., 2005, 103, 59;
J. P. Nicholas, H. Ahn and T. J. Marks, J. Am. Chem. Soc.,
26 J. March, Advanced Organic Chemistry: Reactions, Mechanisms,
and Structure, Wiley-Interscience, New York, 4th edn, 1992;
M. V. Bahaman and M. A. Vannice, J. Catal., 1991, 127, 251.
27 M. Poliakoff, J. M. Fitzpatrick, T. R. Farren and P. T. Anastas,
Science, 2002, 297, 807.
ꢂc
This journal is The Royal Society of Chemistry 2010
4790 | Chem. Commun., 2010, 46, 4788–4790