A R T I C L E S
Kanibolotsky et al.
Chart 1
morphological properties of materials. From a practical stand-
point, chemical purity and uniformity are often critical param-
eters of the performance of LEDs. Several publications dem-
onstrated that the performance and the stability of monodisperse
oligofluorenes in LEDs are higher than those for polyfluorenes,6d
in which fast degradation and an appearance of undesirable
green emission during the LED operation are observed due to
formation of fluorenone defects on the polymer chain.7 In the
absence of chain entanglements or defects (e.g., bends or kinks),
relatively short conjugated chains are believed to be conducive
to the formation of monodomain films. However, oligomers are
generally more inclined to form a crystalline state than polymers,
which can scatter the light and limit charge injection and
transport in LEDs. In this regard, oligomeric materials capable
of demonstrating a glass transition state while resisting crystal-
lization are better candidates for LED applications.
10,15-Dihydro-5H-diindeno[1,2-a;1′,2′-c]fluorene (truxene,
1), a polycyclic aromatic system with C3 symmetry,8 has been
recognized as a potential starting material for the construction
of bowl-shaped fragments of the fullerenes,9 C3 tripodal
materials in chiral recognition,10 and liquid crystalline com-
pounds.11,12 Some syn-trialkylated truxenes (monoalkylated at
each CH2 group) have been shown to self-associate in solution
through arene-arene interactions.13 Recently, Echavarren and
co-workers synthesized a series of sterically crowded 5,10,15-
triarylated truxenes (aryl ) 1- or 2-naphthyl, 9-phenanthryl,
9-anthracenyl). They also prepared overcrowded 5,10,15-tri(9-
fluorenylidene)truxene, which showed reversible reduction peaks
in cyclic voltammetry at -0.94, -1.18, and -1.45 V (vs SCE).14
Truxene can be considered as three “overlapping” fluorene
fragments, and in this sense it represents an excellent choice as
a core for construction of two-dimensional star-shaped oligo-
fluorenes. Its CH2 groups can be easily functionalized (e.g., by
alkyl subsituents to increase the solubility and processability
of the materials) in the same manner as that exploited in oligo/
polyfluorenes; subsequent oligomers constituting oligofluorene
arms and the central truxene core can be virtually considered
as “no-core” star-shaped oligofluorenes. Recently, Pei and co-
workers reported on employing the truxene core for star-shaped
oligothiophene architectures and an elegant synthesis of truxene-
based dendrimers.15
In this paper, we describe the strategy toward novel mono-
disperse, star-shaped oligofluorenes T1-T4 (Chart 1) with a
central truxene core and up to quaterfluorene arms, which results
in nanosized macromolecules. In the case of T4, the radius of
the macromolecule is ca. 4 nm, which represents the largest
known star-shaped conjugated system. We also report on their
highly efficient blue light emission, together with high thermal
and electrochemical stability.
(6) (a) Geng, Y.; Trajkovska, A.; Culligan, S. W.; Ou, J. J.; Chen, H. M. P.;
Katsis, D.; Chen, S. H. J. Am. Chem. Soc. 2003, 125, 14032-14038. (b)
Geng, Y.; Trajkovska, A.; Katsis, D.; Ou, J. J.; Culligan, S. W.; Chen, S.
H. J. Am. Chem. Soc. 2002, 124, 8337-8347. (c) Wong, K.-T.; Chien,
Y.-Y.; Chen, R.-T.; Wang, C.-F.; Lin, Y.-T.; Chiang, H.-H.; Hsieh, P.-Y.;
Wu, C.-C.; Chou, C. H.; Su, Y. O.; Lee, G.-H.; Peng, S.-M. J. Am. Chem.
Soc. 2002, 124, 11576-11577. (d) Geng, Y.; Culligan, S. W.; Trajkowska,
A.; Wallace, J. U.; Chen, S. H. Chem. Mater. 2003, 15, 542-549. (e) Geng,
Y.; Chen, A. C. A.; Ou, J. J.; Chen, S. H. Chem. Mater. 2003, 15, 4352-
4360. (f) Culligan, S. W.; Geng, Y.; Chen, S. H.; Klubek, K.; Vaeth, K.
M.; Tang, C. W. AdV. Mater. 2003, 15, 1176-1180. (g) Lee, S. H.
Nakamura, T.; Tsutsui, T. Org. Lett. 2001, 3, 2005-2007. (h) Klaerner,
G.; Miller, R. D. Macromolecules 1998, 31, 2007-2009.
(7) (a) List, E. J. W.; Guentner, R.; de Freitas, P. S.; Scherf, U. AdV. Mater.
2002, 14, 374-378. (b) Gaal, M.; List, E. J. W.; Scherf, U. Macromolecules
2003, 36, 4236-4237. (c) Gong, X.; Iyer, P. K.; Moses, D.; Bazan, G. C.;
Heeger, A. J.; Xiao, S. S. AdV. Funct. Mater. 2003, 13, 325-329.
(8) Go´mez-Lor, B.; de Frutos, OÄ .; Ceballos, P. A.; Granier, T.; Echavarren,
A. M. Eur. J. Org. Chem. 2001, 2107-2114.
(9) (a) Abdourazak, A. H.; Marcinow, Z.; Sygula, A.; Sygula, R.; Rabideau,
P. W. J. Am. Chem. Soc. 1995, 117, 6410-6411. (b) Demlow, E. V.; Kelle,
T. Synth. Commun. 1997, 27, 2021-2031. (c) Plater, M. J.; Praveen, M.;
Howie, A. R. J. Chem. Res. (S) 1997, 46-47; J. Chem. Res. (M) 1997,
0430-0436. (d) Go´mez-Lor, B.; de Frutos, OÄ .; Echavarren, A. M. Chem.
Commun. 1999, 2431-2432. (e) Go´mez-Lor, B.; Gonza´lez-Cantalapiedra,
E.; Ruiz, M.; de Frutos, OÄ .; Ca´rdenas, D. J.; Santos, A.; Echavarren, A.
M. Chem. Eur. J. 2004, 10, 2601-2608.
Results and Discussion
Synthesis. The strategy used in the synthesis of truxene-
oligofluorenes T1-T4 was different from the repetitive diver-
gent approach exploited by Pei and co-workers for the design
of star-shaped oligomers (an increase of the arm size by
repetitive addition of arm units to the star-shaped oligomer
through Suzuki coupling).15a,16 In our case, the divergent method
gave very low yields, and the separation of the desired oligomers
from mono- and disubstituted byproducts and homocoupling
(10) For the review on C3-symmetrical receptors, see: Moberg, C. Angew.
Chem., Int Ed. 1998, 37, 248-268.
(11) (a) Destrade, C.; Malthete, J.; Tinh, N. H.; Gasparoux, H. Phys. Lett. A
1980, 78, 82-84. (b) Tinh, N. H.; Malthete, J.; Destrade, C. Mol. Cryst.
Liq. Cryst. 1981, 64, 291-298. (c) Destrade, C.; Gasparoux, H.; Babeau,
A.; Tinh, N. H.; Malthete, J. Mol. Cryst. Liq. Cryst. 1981, 67, 693-703.
(d) Foucher, P.; Destrade, C.; Tinh, N. H.; Malthete, J.; Levelut, A. M.
Mol. Cryst. Liq. Cryst. 1984, 108, 219-230. (e) Tinh, N. H.; Foucher, P.;
Destrade, C.; Levelut, A. M.; Malthete, J. Mol. Cryst. Liq. Cryst. 1984,
111, 277-292. (f) Raghunathan, V. A.; Madhusudana, N. V.; Chan-
drasekhar, S.; Destrade, C. Mol. Cryst. Liq. Cryst. 1987, 148, 77-84. (g)
Buisine, J. M.; Cayuela, R.; Destrade, C.; Tinh, N. H. Mol. Cryst. Liq.
Cryst. 1987, 144, 137-160.
(13) (a) de Frutos, OÄ .; Go´mez-Lor, B.; Granier, T.; Monge, M. AÄ .; Gutie´rrez-
Puebla, E.; Echavarren, A. M. Angew. Chem., Int. Ed. 1999, 38, 204-207.
(b) (a) de Frutos, OÄ .; Granier, T.; Go´mez-Lor, B.; Jime´nez-Berbero, J.;
Monge, AÄ .; Gutie´rrez-Puebla, E.; Echavarren, A. M. Chem. Eur. J. 2002,
8, 2879-2890.
(12) (a) Perova, T. S.; Vij, J. K. AdV. Mater. 1995, 7, 919-922. (b) Sandstroem,
D.; Nygren, M.; Zimmermann, H.; Maliniak, A. J. Phys. Chem. 1995, 99,
6661-6669. (c) Fontes, E.; Heiney, P. A.; Ohba, M.; Haseltine, J. N.; Smith,
A. B. Phys. ReV. A 1988, 37, 1329-1334. (d) Lee, W. K.; Wintner, B. A.;
Fontes, E.; Heiney, P. A.; Ohba, M.; Haseltine, J. N.; Smith, A. B. Liq.
Cryst. 1989, 4, 87-102. (e) Lee, W. K.; Heiney, P. A.; Ohba, M.; Haseltine,
J. N.; Smith, A. B. Liq. Cryst. 1990, 8, 839-850. (f) Maliszewskyj, N. C.;
Heiney, P. A.; Blasie, J. K.; McCauley, J. P.; Smith, A. B. J. Phys. II
1992, 2, 75-85. (g) Goldfarb, D.; Belsky, I.; Luz, Z.; Zimmermann, H. J.
Chem. Phys. 1983, 79, 6203-6210.
(14) Ruiz, M.; Go´mez-Lor, B.; Santos, A.; Echavarren, A. M. Eur. J. Org. Chem.
2004, 858-866.
(15) (a) Pei, J.; Wang, J.-L.; Cao, X.-Y.; Zhou, X.-H.; Zhang, W.-B. J. Am.
Chem. Soc. 2003, 125, 9944-9945. (b) Cao, X.-Y.; Zhang, W.-B.; Wang,
J.-L.; Zhou, X.-H.; Lu, H.; Pei, J. J. Am. Chem. Soc. 2003, 125, 12430-
12431.
(16) Zhou, X.-H.; Yan, J.-C.; Pei, J. Org. Lett. 2003, 5, 3543-3546.
9
13696 J. AM. CHEM. SOC. VOL. 126, NO. 42, 2004