Organometallics
Article
1H), 7.22−7.48 (m, 9H), 6.83−6.91 (m, 2H), 5.63−5.91 (m, 2H),
4.60−4.80 (m, 2H), 1.97 (dd, J = 1.8, 6.6 Hz, 3H), 1.77 (dd, J = 1.8,
7.0 Hz, 3H), 1.47 (d, J = 6.0 Hz, 6H), 1.43 (d, J = 6.0 Hz, 6H). 13C
NMR (50 MHz, CDCl3): δ 155.4 (ovl), 137.0, 136.1, 136.0, 135.7,
134.5, 134.3, 128.1, 127.2, 127.0, 125.9, 125.8, 125.53, 125.48, 125.3
(ovl), 124.4, 123.8, 121.2, 120.9, 120.8, 108.3, 108.2, 70.9, 70.8, 22.1,
21.9, 18.5, 14.0. MS (EI, m/z, relative intensity): 226 (M•+, 28), 184
(24), 168 (11), 155 (100), 139 (7), 127 (11). Anal. Calcd for
C16H18O: C, 84.91; H, 8.02. Found: C, 84.71; H, 7.85.
(2) Schwab, P.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc. 1996,
118, 100−110.
(3) Samojłowicz, C.; Bieniek, M.; Grela, K. Chem. Rev. 2009, 109,
3708−3742.
(4) (a) Garber, S. B.; Kingsbury, J. S.; Gray, B. L.; Hoveyda, A. H. J.
Am. Chem. Soc. 2000, 122, 8168−8179. (b) Vougioukalakis, G. C.;
Grubbs, R. H. Chem. Rev. 2010, 110, 1746−1787. (c) Vidavsky, Y.;
Anaby, A.; Lemcoff, N. G. Dalton Trans. 2012, 41, 32−43.
(5) (a) Kost, T.; Sigalov, M.; Goldberg, I.; Ben-Asuly, A.; Lemcoff, N.
G. J. Organomet. Chem. 2008, 693, 2200−2203. (b) Ben-Asuly, A.;
Tzur, E.; Diesendruck, C. E.; Sigalov, M.; Goldberg, I.; Lemcoff, N. G.
Organometallics 2008, 27, 811−813. (c) Aharoni, A.; Vidavsky, Y.;
Diesendruck, C. E.; Ben-Asuly, A.; Goldberg, I.; Lemcoff, N. G.
Organometallics 2011, 30, 1607−1615. (d) Ben-Asuly, A.; Aharoni, A.;
Diesendruck, C. E.; Vidavsky, Y.; Goldberg, I.; Straub, B. F.; Lemcoff,
N. G. Organometallics 2009, 28, 4652−4655. (e) Ginzburg, Y.; Anaby,
A.; Vidavsky, Y.; Diesendruck, C. E.; Ben-Asuly, A.; Goldberg, I.;
Lemcoff, N. G. Organometallics 2011, 30, 3430−3437. (f) Szadkowska,
Synthesis of 14. A Schlenk flask was charged with 8b (0.274 g,
1.21 mmol), toluene (20 mL), CuCl (0.149 g; 1.51 mmol), and 16
(0.948 g, 1.00 mmol) and placed in a preheated oil bath at 80 °C with
stirring. After 20 min the heating bath was removed, most of the
solvent was removed in vacuo, and the residue was placed as a
suspension in a small volume of ethyl acetate on the top of a
chromatographic column (300 mL of silica) and eluted with gradually
changing mixture of cyclohexane and ethyl acetate (6/1 to 1/2). The
first yellowish red fractions were removed, and a green band was
collected (the green product slowly dissolved and was desorbed from
silica). Solvent was evaporated, the residue was dissolved in CH2Cl2 (9
mL), and MeOH (9 mL) was added. Most of the solvents were slowly
removed by evaporation at 220 mbar.39 The resulting suspension was
filtered on a small Schott filter, washed with MeOH (3 × 3 mL), and
dried in vacuo to give 14 (0.477 g; 0.70 mmol; 70%), as a green
microcrystalline solid.
A.; Makal, A.; Wozniak, K.; Kadyrov, R.; Grela, K. Organometallics
́
̇
2009, 28, 2693−2700. (g) Szadkowska, A.; Zukowska, K.; Pazio, A. E.;
Wozniak, K.; Kadyrov, R.; Grela, K. Organometallics 2011, 30, 1130−
́
1138.
(6) (a) Barbasiewicz, M.; Szadkowska, A.; Bujok, R.; Grela, K.
Organometallics 2006, 25, 3599−3604. (b) Tzur, E.; Szadkowska, A.;
1
Ben-Asuly, A.; Makal, A.; Goldberg, I.; Wozniak, K.; Grela, K.;
́
Data for 14 are as follows. H NMR (500 MHz, CH2Cl2): δ 18.66
̇
Lemcoff, N. G. Chem. Eur. J. 2010, 16, 8726−8737. (c) Zukowska, K.;
(s, 1H), 8.11 (d, J = 7.6 Hz, 1H), 7.55 (d, J = 8.0 Hz, 1H), 7.33 (dd, J
= 8.0, 8.0 Hz, 1H), 7.29 (dd, J = 7.6, 7.6 Hz, 1H), 7.21 (d, J = 8.1 Hz,
1H), 7.08 (s, 4H), 6.67 (d, J = 7.1 Hz, 1H), 5.09 (sept, J = 6.3 Hz,
1H), 3.97−4.18 (m, 4H), 2.63 (s, 6H), 2.49 (s, 3H), 2.38 (s, 3H), 2.31
(s, 6H), 2.16 (d, J = 6.3 Hz, 6H). 13C NMR (125 MHz, CD2Cl2): δ
313.8, 210.1, 152.2, 144.9, 140.4, 139.5, 138.9, 138.1, 137.9, 137.8,
134.9, 131.4, 130.1, 129.8, 126.85, 126.83, 124.3, 122.5, 120.1, 112.5,
79.5, 52.7, 50.9, 21.1, 20.5, 19.9, 18.3. IR (KBr, cm−1): 2912, 1606,
1555, 1503, 1479, 1416, 1379, 1264, 1236, 1221, 1171, 1129, 1089,
1031, 906, 852, 834, 740, 579, 422. HRMS (ESI, m/z): calcd for
C35H40ClN2ORu 641.1873, found 641.1877 (M − Cl)•+. Anal. Calcd
for C35H40Cl2N2ORu: C, 62.12; H, 5.96; N, 4.14. Found:22 C, 60.40;
H, 5.85; N, 3.78.
Szadkowska, A.; Pazio, A. E.; Wozniak, K.; Grela, K. Organometallics
́
2012, 31, 462−469.
(7) Lexer, C.; Burtscher, D.; Perner, B.; Tzur, E.; Lemcoff, N. G.;
Slugovc, C. J. Organomet. Chem. 2011, 696, 2466−2470.
(8) Diesendruck, C. E.; Tzur, E.; Ben-Asuly, A.; Goldberg, I.; Straub,
B. F.; Lemcoff, N. G. Inorg. Chem. 2009, 48, 10819−10825.
(9) Barbasiewicz, M.; Szadkowska, A.; Makal, A.; Jarzembska, K.;
Wozniak, K.; Grela, K. Chem. Eur. J. 2008, 14, 9330−9337.
́
(10) (a) Grela, K.; Harutyunyan, S.; Michrowska, A. Angew. Chem.,
Int. Ed. 2002, 41, 4038−4040. (b) Michrowska, A.; Bujok, R.;
Harutyunyan, S.; Sashuk, V.; Dolgonos, G.; Grela, K. J. Am. Chem. Soc.
2004, 126, 9318−9325.
(11) Wakamatsu, H.; Blechert, S. Angew. Chem., Int. Ed. 2002, 41,
2403−2405.
ASSOCIATED CONTENT
■
(12) Vorfalt, T.; Wannowius, K.-J.; Plenio, H. Angew. Chem., Int. Ed.
2010, 49, 5533−5536.
S
* Supporting Information
Text, figures, tables, and CIF files giving NMR spectra for
compounds 8a,b and 12−14, experimental procedures for the
synthesis of 10 and 11, a complete modeling program citation,
and crystallographic data for compounds 14 and 21. This
material is available free of charge via the Internet at http://
(13) Thiel, V.; Hendann, M.; Wannowius, K.-J.; Plenio, H. J. Am.
Chem. Soc. 2012, 134, 1104−1114.
(14) Solans-Monfort, X.; Pleixats, R.; Sodupe, M. Chem. Eur. J. 2010,
16, 7331−7343.
(15) The assumption is valid until structure of substrates and reaction
conditions do not cause a change of the rate-determining step. For
structural variations of NHC ligands, which influence properties of
propagating species, see ref 3.
AUTHOR INFORMATION
■
(16) Prof. Christian Slugovc (Graz University of Technology) called
the isomeric complexes 4a−c “unequal siblings” to emphasize their
activity differences in ring-opening metathesis polymerization
(ROMP).17 Obviously, our isomeric complex 14 represents still
another relative of the family, missing until now.
(17) Leitgeb, A.; Szadkowska, A.; Michalak, M.; Barbasiewicz, M.;
Grela, K.; Slugovc, Ch. J. Pol. Sci. A: Polym. Chem. 2011, 49, 3448−
3454.
Corresponding Author
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
(18) (a) Kilian, P.; Knight, F. R.; Woollins, J. D. Chem. Eur. J. 2011,
17, 2302−2328. (b) Kilian, P.; Knight, F. R.; Woollins, J. D. Coord.
Chem. Rev. 2011, 255, 1387−1413.
■
This work was financed by the Polish Ministry of Science and
Higher Education (Grant No. N N204 152436). M.B. thanks
Prof. Karol Grela for support and the opportunity to perform
an independent research program in the field.
̈
(19) Cammidge, A. N.; Ozturk, O. J. Org. Chem. 2002, 67, 7457−
̈
7464.
(20) Zaja, M.; Connon, S. J.; Dunne, A. M.; Rivard, M.; Buschmann,
N.; Jiricek, J.; Blechert, S. Tetrahedron 2003, 59, 6545−6558.
(21) For the synthesis of complex 16, see: (a) Monsaert, S.;
Drozdzak, R.; Dragutan, V.; Dragutan, I.; Verpoort, F. Eur. J. Inorg.
Chem. 2008, 432−440. (b) Monsaert, S.; De Canck, E.; Drozdzak, R.;
REFERENCES
■
(1) For a recent review of metathesis applications, see: Kotha, S.;
Dipak, M. K. Tetrahedron 2012, 68, 397−421.
3176
dx.doi.org/10.1021/om300052b | Organometallics 2012, 31, 3171−3177