C O M M U N I C A T I O N S
alternation on the rest of the benzene ring point to the significance
of structure 5b-B as a major contributor.
A preliminary test of their catalytic activity revealed that these
Pd complexes are extremely efficient precatalysts for the Heck
reaction (Table 1). The coupling of unactivated and deactivated
aryl bromides with styrene could be achieved with TON greater
than 1 000 0000. The catalysts were active at extremely low loading
and remained active over a long period of reaction time, attesting
to their excellent stability under the conditions employed. The
unprecedented efficiency of 5a and 5b may be attributed to the
anionic nature of the carbene ligand. The electron-donating methoxy
groups in 5b make it significantly more reactive than 5a, pointing
to the possibility of electronic and steric tuning on the carbene
ligand to further increase the activity of the resulting metal catalysts.
In conclusion, we have shown that highly active and catalytically
useful Pd complexes can be conveniently assembled from readily
available ligand precursors. The concept of using an anionic
carbocyclic carbene as ancillary ligand for palladium as demon-
strated here opens a new opportunity for the development of
structurally novel carbene ligands for transition metal catalysis.
Figure 3. X-ray crystal structure and selected bond lengths (Å) of 5b.
Table 1. The Heck Reaction of Aryl Halides Catalyzed by Pd(II)
Complexes 5a and 5b
Supporting Information Available: Experimental details and
spectroscopic and X-ray data of compounds 5a and 5b. This material
is available free of charge via the Internet at http://pubs.acs.org.
References
(
(
(
1) Herrmann, W. A.; Elison, M.; Fischer, J.; K o¨ cher, C.; Artus, G. R. J.
Angew. Chem., Int. Ed. Engl. 1995, 34, 2371.
2) (a) Arduengo, A. J., III. Acc. Chem. Res. 1999, 32, 913. (b) Bourissou,
D.; Guerret, O.; Gabba ¨ı , F. P.; Bertrand, G. Chem. ReV. 2000, 100, 39.
3) (a) Herrmann, W. A. Angew. Chem., Int. Ed. 2002, 41, 1290. (b) Peris,
E.; Crabtree, R. H. Coord. Chem. ReV. 2004, 248, 2239. (c) Scott, N. M.;
Nolan, S. P. Eur. J. Inorg. Chem. 2005, 1815.
(
4) Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res. 2001, 34, 18.
5) Marion, N.; Navarro, O.; Mei, J.; Stevens, E. D.; Scott, N. M., III; Nolan,
S. P. J. Am. Chem. Soc. 2006, 128, 4102.
(
(6) Hahn, F. E. Angew. Chem., Int. Ed. 2006, 45, 1348.
(7) (a) Enders, D.; Breuer, K.; Raabe, G.; Runsink, J.; Teles, J. H.; Melder,
J.-P.; Ebel, K.; Brode, S. Angew. Chem., Int. Ed. Engl. 1995, 34, 1021.
(
b) Alder, R. W.; Blake, M. E.; Bortolotti, C.; Bufali, S.; Butts, C. P.;
Linehan, E.; Oliva, J. M.; Orpen, A. G.; Quayle, M. J. Chem. Commun.
999, 241. (c) Alcarazo, M.; Roseblade, S. J.; Cowley, A. R.; Fernandez,
R.; Brown, J. M.; Lassaletta, J. M. J. Am. Chem. Soc. 2005, 127, 3290.
d) Weiss, R.; Reichel, S.; Handke, M.; Hampel, F. Angew. Chem., Int.
1
(
Ed. 1998, 37, 344. (e) Bazinet, P.; Yap, G. P. A.; Richeson, D. S. J. Am.
Chem. Soc. 2003, 125, 13314. (f) Grady, M. J. W.; Guzei, I. A.;
Gandhi, B. A.; Bunel, E. E.; Stahl, S. S. Angew. Chem., Int. Ed. 2005,
44, 5269.
(
8) (a) Despagnet-Ayoub, E.; Grubbs, R. H. J. Am. Chem. Soc. 2004, 126,
10198. (b) Krahulic, K. E.; Enright, G. D.; Parvez, M.; Roesler, R. J.
Am. Chem. Soc. 2005, 127, 4142. (c) Prasang, C.; Donnadieu, B.; Bertrand,
G. J. Am. Chem. Soc. 2005, 127, 10182.
a
Isolated yield based on the average of two parallel runs. b Up to 10%
1
of the minor isomers was detected by H NMR spectroscopy.
(9) Kassaee, M. S.; Nimlos, M. R.; Downie, K. E.; Waali, E. E. Tetrahedron
dimethoxy analogue 5b was synthesized and isolated as a 5:1
isomeric mixture with the transoid isomer being the major
component.
1985, 41, 1579.
(10) Although cyclic alkylidenes including indenylidenes and fluorenylidenes
are more commonly found in Schrock-type carbene complexes, they are
not generally used as ancillary ligands in transition metal catalysis due to
poor stability. For examples, see: (a) D o¨ rwald, F. G. Metal Carbenes in
Organic Synthesis; Wiley-VCH: Weinheim, Germany, 1999. (b) Bryan,
J. C.; Mayer, J. M. J. Am. Chem. Soc. 1990, 112, 2298. (c) Schrock, R.
R.; Seidel, S. W.; M o¨ sch-Zanetti, N. C.; Dobbs, D. A.; Shih, K.-Y.; Davis,
W. M. Organometallics 1997, 16, 5195. (d) Jafarpour, L.; Schanz, J.-J.;
Stevens, E. D.; Nolan, S. P. Organometallics 1999, 18, 5416. (e) F u¨ rstner,
A.; Davies, P. W.; Lehmann, C. W. Organometallics 2005, 24, 4065. (f)
Pfeiffer, J.; D o¨ tz, K. H. Angew. Chem., Int. Ed. Engl. 1997, 36, 2828.
6 6
Crystallization of 5b from C D yielded yellow crystals suitable
for X-ray structure determination. As shown in Figure 3, 5b
crystallizes as a single diastereomer, the transoid acetato-bridged
form. Several structural features revealed by the bond parameters
are noteworthy. The nitrogen atoms adopt a nearly planar geometry.
The bond lengths at the benzylic carbon (C-C, 1.44 Å; CdN,
(
11) Lavallo, V.; Canac, Y.; Donnadie, B.; Schoeller, W. W.; Bertrand, G.
1
.29 Å) are highly indicative of the zwitterionic iminium resonance
Science 2006, 312, 722.
form 5b-A, the charge delocalized sum of individual resonance
structures such as 5b-B. Contribution from the enamine form 5b-
C, an o-metallaquinodimethane structure, if any, must be minimal.
Additionally, the elongated C-C bonds (1.41 and 1.42 Å) at the
carbon ipso to the benzylic position and the noticeable bond
(12) (a) Lu, Z.; Abboud, K. A.; Jones, W. M. J. Am. Chem. Soc. 1992, 114,
1
0991. (b) Lu, Z.; Jones, W. M.; Winchester, W. R. Organometallics 1993,
12, 1344.
(13) Herrmann, W. A.; Ofele, K.; Schneider, S. K.; Herdtweck, E.; Hoffmann,
S. D. Angew. Chem., Int. Ed. 2006, 45, 3859-3862.
JA0701659
J. AM. CHEM. SOC.
9
VOL. 129, NO. 11, 2007 3089