Communication
ChemComm
reaction between methyl benzoate and ethylene glycol, while
pyridinic N species were responsible for the Michael addition
between nitromethane and methylacrylate. The as-obtained
amino-grafted GO is proved to be a kind of environmentally
benign heterogeneous solid base catalyst that can be applied to
a series of base-catalysed reactions.
This work was supported by the Collaborative Innovation
Center of Chemical Science and Engineering (Tianjin), the Ministry
of Education of China (NCET-11-0251 and IRT13022), 111 Project
(B12015) and the National Natural Science Foundation of China
(51202262, 50921004, and 21133010).
Notes and references
Fig. 4 Correlation between the specific N content in PAGO and the
catalytic activity.
1 (a) J. Liang, Y. Jiao, M. Jaroniec and S. Z. Qiao, Angew. Chem., Int. Ed.,
2012, 51, 11496; (b) S. Yang, X. Feng, X. Wang and K. Mu¨llen, Angew.
Chem., Int. Ed., 2011, 50, 5339; (c) C. Yuan, W. Chen and L. Yan, J. Mater.
Chem., 2012, 22, 7456; (d) S. Verma, H. P. Mungse, N. Kumar,
S. Choudhary, S. L. Jain, B. Sain and O. P. Khatri, Chem. Commun.,
2011, 47, 12673; (e) D. R. Dreyer, R. S. Ruoff and C. W. Bielawski, Angew.
Chem., Int. Ed., 2010, 49, 9336; ( f ) D. R. Dreyer and C. W. Bielawski,
Chem. Sci., 2011, 2, 1233; (g) D. R. Dreyer and C. W. Bielawski, Adv. Funct.
Mater., 2012, 22, 3247; (h) D. W. Boukhvalov, D. R. Dreyer,
C. W. Bielawski and Y. W. Son, ChemCatChem, 2012, 4, 1844;
(i) H. P. Jia, D. R. Dreyer and C. W. Bielawski, Adv. Synth. Catal., 2011,
353, 528; ( j) D. R. Dreyer, K. A. Jarvis, J. F. Paulo and C. W. Bielawski,
Macromolecules, 2011, 44, 7659; (k) D. R. Dreyer, K. A. Jarvis, P. J. Ferreira
and C. W. Bielawski, Polym. Chem., 2012, 3, 757; (l) A. D. Todd and
C. W. Bielawski, Catal. Sci. Technol., 2013, 3, 135.
from 6 to 49% with the increase in synthesis temperature, being
similar to the change in the amount of pyridinic N. A direct
correlation between the fraction of pyridinic N and the methyl-
acrylate conversion was obtained (Fig. 4a), indicating a determining
role of the pyridinic N component especially after ruling out the
effect of amine N as discussed above. For transesterification
reaction, both pyridinic N and amine N showed certain basicity,
and their contributions to the activity are difficult to be distin-
guished. To solve the problem, we passivated the amine species in
PAGO-t samples with nitromethane at the reaction temperature
(323 K for 12 h, followed by drying overnight under vacuum at
323 K) before transesterification. The nitromethane treated PAGO-t
catalysts surprisingly displayed no activity in transesterification
reaction, while the activity in Michael addition reaction was well
preserved. We therefore concluded that the amine N should be
the actual active component for transesterification reaction, as
confirmed by the proportional relationship between the content
of amine N and the conversion rate of methyl benzoate (Fig. 4b).
To sum up, we demonstrate a facile and economical route to
functionalize GO by nitrogen-containing groups via hydrothermal
treatment in the aqueous solution of primary amines. The
amount of total nitrogen atoms and the distribution of nitrogen
components can be well adjusted by controlling the synthesis
parameters like the type of amines and hydrothermal tempera-
ture. The amino-grafted GO samples displayed a super basicity
with the apparent pKa value of 37–39 and exhibited remarkable
catalytic activities in several typical homogeneous reactions, i.e.
Knoevenagel condensation, Michael addition and transesterifica-
tion. The amine N species coordinated the transesterification
2 J. Ji, G. Zhang, H. Chen, S. Wang, G. Zhang, F. Zhang and X. Fan,
Chem. Sci., 2011, 2, 484.
3 (a) S. van Dommele, K. P. de Jong and J. H. Bitter, Chem. Commun.,
2006, 4859; (b) J. P. Tessonnier, A. Villa, O. Majoulet, D. S. Suand and
¨
R. Schlogl, Angew. Chem., Int. Ed., 2009, 48, 6543.
4 W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc., 1958, 80, 1339.
5 X. Li, H. Wang, J. T. Robinson, H. Sanchez, G. Diankov and H. Dai,
J. Am. Chem. Soc., 2009, 131, 15939.
´
´
6 J. I. Paredes, S. Villar-Rodil, A. Martınez-Alonso and J. M. D. Tascon,
Langmuir, 2008, 24, 10560.
7 L. G. Cançado, K. Takai, T. Enoki, M. Endo, Y. A. Kim, H. Mizusaki,
˜
A. Jorio, L. N. Coelho, R. Magalhaes-Paniago and M. A. Pimenta,
Appl. Phys. Lett., 2006, 88, 163106.
8 H. Yang, C. Shan, F. Li, D. Han, Q. Zhang and L. Niu, Chem.
Commun., 2009, 3880.
9 (a) S. R. Kelemen, M. Afeworki, M. L. Gorbaty and P. J. Kwiatek,
Energy Fuels, 2002, 16, 1507; (b) R. Pietrzak, Fuel, 2009, 88, 1871;
´
(c) G. Soto, E. C. Samano, R. Machorro, M. H. Farıas and L. Cota-
Araiza, Appl. Surf. Sci., 2001, 183, 246; (d) R. J. J. Jansen and H. van
Bekkum, Carbon, 1995, 33, 1021.
10 (a) S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas,
E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen and R. S. Ruoff,
Nature, 2006, 442, 282; (b) G. I. Titelman, V. Gelman, S. Bron,
R. L. Khalfin, Y. Cohen and H. Bianco-Peled, Carbon, 2005, 43, 641.
11 J. Shen, Y. Hu, M. Shi, X. Lu, C. Qin, C. Li and M. Ye, Chem. Mater.,
2009, 21, 3514.
12 H. Kabashima, H. Tsuji, S. Nakatab, Y. Tanaka and H. Hattori, Appl.
Catal., A, 2000, 194–195, 227.
4308 | Chem. Commun., 2014, 50, 4305--4308
This journal is ©The Royal Society of Chemistry 2014