Dalton Transactions
Paper
nanospheres with well-defined magnetic core–shell nano- 18 S. Sá, M. B. Gawande, A. Velhinho, J. P. Veiga,
structures, confined catalytic Pd NPs and accessible meso-
porous CeO2 by combining the hydrothermal method,
interfacial in situ deposition and a sol–gel process. The well-
N. Bundaleski, J. Trigueiro, A. Tolstogouzov, O. M. N. D.
Teodoro, R. Zboril, R. S. Varma and P. S. Branco, Green
Chem., 2014, 16, 3494–3500.
designed hierarchical nanospheres have high magnetization 19 M. B. Gawande, R. Luque and R. Zboril, ChemCatChem,
(21.3 emu per g), with a highly open mesoporous character- 2014, 6, 3312–3313.
istics (∼3.5 nm in diameter), and smoothly restricted but 20 D. Wang, Astruc. Chem. Rev., 2014, 114, 6949–6985.
uncovered catalytic Pd NPs that uniformly disperse between 21 H. Hildebrand, K. Mackenzie and F. D. Kopinke, Environ.
the carbon-protected Fe3O4 core and the mesoporous CeO2
shell. The as-obtained multifunctional Fe3O4@C–Pd@CeO2 22 Z. Sun, J. Yang, J. Wang, W. Li, S. Kaliaguine, X. Hou,
nanospheres show excellent catalytic performance in the Y. Deng and D. Zhao, J. Mater. Chem. A, 2014, 2, 6071–6074.
Suzuki–Miyaura cross-coupling reaction and the reduction of 23 Q. M. Kainz and O. Reiser, Acc. Chem. Res., 2014, 47, 667–
4-nitrophenol both with convenient separability and remark- 677.
able reusability without loss activity after reusing ten times. 24 X. Le, Z. Dong, Y. Liu, Z. Jin, T. Huy, M. Le and J. Ma,
Therefore, as a novel Pd-based catalyst system, this multifunc- J. Mater. Chem. A, 2014, 2, 19696–19706.
tional core–shell nanostructure holds great promise for 25 X. X. Han, A. M. Schmidt, G. Marten, A. Fischer,
Sci. Technol., 2009, 43, 3254–3259.
various catalytic reactions. In addition, the design idea for the
hierarchical nanomaterials can be expanded to the synthesis
I. M. Weidinger and P. Hildebrandt, ACS Nano, 2013, 7,
3212–3220.
of other multicomponent nanomaterials with integrated and 26 J. Cao, J. C. Li, L. Liu, A. J. Xie, S. K. Li, L. G. Qiu, Y. P. Yuan
enhanced capabilities for various applications.
and Y. H. Shen, J. Mater. Chem. A, 2014, 2, 7593–7597.
27 Z. J. Wu, C. G. Sun, Y. Chai and M. G. Zhang, RSC Adv.,
2011, 1, 1179–1182.
28 X. B. Zhang, H. W. Tong, S. M. Liu, G. P. Yong and
Y. F. Guan, J. Mater. Chem. A, 2013, 1, 7488–7494.
29 Q. M. Kainz, R. Linhardt, R. N. Grass, G. Vilé, W. J. Stark
and O. Reiser, Adv. Funct. Mater., 2014, 24, 2020–2027.
30 M. B. Gawande, Y. Monga, R. Zboril and R. K. Sharma,
Coord. Chem. Rev., 2015, 288, 118–143.
31 R. Li, P. Zhang, Y. Huang, P. Zhang, H. Zhong and
Q. Chen, J. Mater. Chem. A, 2012, 22, 2275–22755.
32 T. Yao, T. Cui, J. Wu, Q. Chen, X. Yin, F. Cui and K. Sun,
Carbon, 2012, 50, 2287–2295.
References
1 G. V. Hartland, Chem. Rev., 2011, 111, 3858–3887.
2 S. N. Tian, Z. Zhou, S. Sun, Y. Ding and Z. L. Wang, Science,
2007, 316, 732–735.
3 T. K. Sau, A. L. Rogach, F. Jäckel, T. A. Klar and
J. Feldmann, Adv. Mater., 2010, 22, 1805–1825.
4 S. Linic, P. Christopher and D. B. Ingram, Nat. Mater.,
2011, 10, 911–921.
5 A. Scholl and A. Dionne, Nature, 2012, 483, 421–427.
6 L. Chen, G. Chen, C. Leung, S. Yiu, C. Ko, E. Anxolabéhère- 33 T. Zeng, X. Zhang, S. Wang, Y. Ma, H. Niu and Y. Cai, Chem
Mallart, M. Robert and T. Lau, ACS Catal., 2015, 5, 356–364. – Eur. J., 2014, 20, 6474–6481.
7 L. Zhong, A. Chokkalingam, W. S. Cha, K. S. Lakhi, X. Su, 34 O. O. Fashedemi, H. A. Miller, A. Marchionni, F. Vizza and
G. Lawrence and A. Vinu, Catal. Today, 2015, 243, 195–198. K. I. Ozoemena, J. Mater. Chem. A, 2015, 3, 7145–7156.
8 A. Sanchez, S. Abbet, U. Heiz, W. D. Schneider, 35 M. Shokouhimehr, T. Kim, S. W. Jun, K. Shin, Y. Jang,
H. Häkkinen, R. N. Barnett and U. Landman, J. Phys. Chem.
A, 1999, 103, 9573–9578.
B. H. Kim, J. Kim and T. Hyeon, Appl. Catal., A, 2014, 476,
133–139.
9 E. Yoo, T. Okata, T. Akita, M. Kohyama, J. Nakamura and 36 B. Liu, Q. Wang, S. Yu, T. Zhao, J. Han, P. Jing, W. Hu,
I. Honma, Nano Lett., 2009, 9, 2255–2259.
10 C. An, S. Peng and Y. Sun, Adv. Mater., 2010, 22, 2570–2574.
L. Liu, J. Zhang, L. Sun and C. Yan, Nanoscale, 2013, 5,
9747–9757.
11 K. Soukup, P. Topka, V. Hejtmánek, D. Petráš, V. Valeš and 37 B. Liu, Y. Niu, Y. Li, F. Yang, J. Guo, Q. Wang, P. Jing,
O. Šolcová, Catal. Today, 2014, 236, 3–11.
12 R. G. Chaudhuri and S. Paria, Chem. Rev., 2012, 112, 2373–
2433.
13 J. M. Thomas, B. F. G. Johnson, R. Raja, G. Sankar and
P. A. Midgley, Acc. Chem. Res., 2003, 36, 20–30.
J. Zhang and G. Yun, Chem. Commun., 2014, 50, 12356–
12359.
38 Y. Deng, Y. Cai, Z. Sun, J. Liu, C. Liu, J. Wei, W. Li, C. Liu,
Y. Wang and D. Zhao, J. Am. Chem. Soc., 2010, 132, 8466–
8473.
14 M. Liu, R. Z. Zhang and W. Chen, Chem. Rev., 2014, 114, 39 X. Li, X. Wang, D. Liu, S. Song and H. Zhang, Chem.
5117–5160. Commun., 2014, 50, 7198–7201.
15 Y. Zhou, H. Wang, M. Gong, Z. Sun, K. Cheng, X. Kong, 40 G. Cheng, J. Zhang, Y. Liu, D. Sun and J. Ni, Chem.
Z. Guo and Q. Chen, Dalton Trans., 2013, 42, 9906–9913. Commun., 2011, 47, 5732–5734.
16 M. B. Gawande, R. Zboril, V. Malgras and Y. Yamauchi, 41 S. Zhang, J. Li, W. Gao and Y. Qu, Nanoscale, 2015, 7, 3016–
J. Mater. Chem. A, 2015, 3, 8241–8245. 3021.
17 M. B. Gawande, P. S. Branco and R. S. Varma, Chem. Soc. 42 T. J. Yao, T. Y. Cui, X. Fang and J. Wu, Nanoscale, 2013, 5,
Rev., 2013, 42, 3371–3393.
5896–5904.
This journal is © The Royal Society of Chemistry 2015
Dalton Trans.