J.-S. Yang et al. / Tetrahedron Letters 48 (2007) 3097–3102
3101
O
O
O
O
O
ratiometric
mode II
off-on
NH
R
+
+
mode I
PICT state
O
O
= metal ions
O
O
O
O
O
O
O
O
+ H+
NH
NH2
R
R
_
H+
TICT state
LE state
Figure 6. Schematic presentation of the bimodal fluoroinophoric behavior of 1 and 2.
factor on going from Mg2+ to Ca2+ and to Ba2+. Under
the acidic conditions, the absorption band for the free
probe (386 nm) is not completely disappeared (Fig. 3),
which can be accounted for by the lower basicity of 2
due to the cyano group.
3. For recent examples of ICT-based probes, see: (a) Yang,
J.-S.; Hwang, C.-Y.; Hsieh, C.-C.; Chiou, S.-Y. J. Org.
Chem. 2004, 69, 719–726; (b) Yang, J.-S.; Lin, Y.-D.;
Chang, Y.-H.; Wang, S.-S. J. Org. Chem. 2005, 70, 6066–
6073; (c) Caballero, A.; Marti’nez, R.; Lloveras, V.;
´
Ratera, I.; Vidal-Gancedo, J.; Wurst, K.; Tarraga, A.;
Molina, P.; Veciana, J. J. Am. Chem. Soc. 2005, 127,
15666–15667; (d) Cheung, S.-M.; Chan, W.-H. Tetra-
hedron 2006, 62, 8379–8383; (e) Liu, L.-H.; Zhang, H.; Li,
A.-F.; Xie, J.-W.; Jiang, Y.-B. Tetrahedron 2006, 62,
10441–10449.
In conclusion, we have demonstrated that trans-4-(N-
arylamino)stilbenes are potential fluorophores for sen-
sor design. In particular, as shown by the benzocrown
derivatives 1 and 2, the resulting fluorescent probes
can function under acidic as well as neutral conditions
through different signaling mechanisms. The summa-
rized fluoroionophoric behavior for 1 and 2 is depicted
in Figure 6. Whereas the fluorescence response of 1
and 2 is a combination of an off–on intensity changes
and wavelength shifts under neutral conditions, fluores-
cence signaling under acidic conditions results in metal
ion-induced deprotonation of the ammonium ion and
LE-PICT dual fluorescence. Since the selectivity of a
probe and the complex stability mainly depend on the
receptor, the use of more selective and powerful recep-
tors should improve the performance (e.g., function in
aqueous solutions) of N-(arylamino)stilbene-derived
fluorescent probes. Further investigation toward this
issue is in progress.
´
4. (a) Letard, J.-F.; Delmond, S.; Lapouyade, R.; Braun, D.;
Rettig, W.; Kreissler, M. Recl. Trav. Chim. Pays-Bas 1995,
114, 517–527; (b) Collins, G. E.; Choi, L.-S.; Callahan, J.
H. J. Am. Chem. Soc. 1998, 120, 1474–1478; (c) Choi,
L.-S.; Collins, G. E. Chem. Commun. 1998, 893–894; (d)
Morozumi, T.; Anada, T.; Nakamura, H. J. Phys. Chem.
B 2001, 105, 2923–2931; (e) Sibert, J. W.; Forshee, P. B.
Inorg. Chem. 2002, 41, 5928–5930; (f) Aoki, S.; Kagata,
D.; Shiro, M.; Takeda, K.; kimura, E. J. Am. Chem. Soc.
2004, 126, 13377–13390; (g) Liu, B.; Chen, J.; Yang, G.;
Li, Y. Res. Chem. Intermed. 2004, 30, 345–353; (h) Li, Y.
Q.; Bricks, J. L.; Resch-Genger, U.; Spieles, M.; Rettig,
W. J. Fluoresc. 2006, 16, 337–348.
5. The PICT state often refers to the locally excited (LE)
state.
6. (a) Crochet, P.; Malval, J.-P.; Lapouyade, R. Chem.
Commun. 2000, 289–290; (b) Rurack, K.; Rettig, W.;
Resch-Genger, U. Chem. Commun. 2000, 407–408; (c)
Malval, J.-P.; Gosse, I.; Morand, J.-P.; Lapouyade, R. J.
Am. Chem. Soc. 2002, 124, 904–905.
Acknowledgment
7. (a) Yang, J.-S.; Liau, K.-L.; Wang, C.-M.; Hwang, C.-Y.
J. Am. Chem. Soc. 2004, 126, 12325–12335; (b) Yang,
J.-S.; Liau, K.-L.; Hwang, C.-Y.; Wang, C.-M. J. Phys.
Chem. A 2006, 110, 8003–8010.
Financial support for this research was provided by the
National Science Council of Taiwan, ROC.
8. (a) Bance, S.; Barber, H. J.; Woolman, A. M. J. Chem.
Soc. 1943, 1–4; (b) Kumari, N.; Kendurkar, P. S.; Tewari,
R. S. J. Organomet. Chem. 1975, 96, 237–241; (c) Berezina,
R. N.; Kobrin, V. S.; Kusov, S. Z.; Lubenets, E. G. Russ.
J. Org. Chem. 1998, 34, 1517–1518; (d) Bogaschenko, T.;
Basok, S.; Kulygina, C.; Lyapunov, A.; Lukyanenko, N.
Synthesis 2002, 2266–2270.
9. (a) Wolfe, J. P.; Wagaw, S.; Marcoux, J.-F.; Buchwald, S.
L. Acc. Chem. Res. 1998, 31, 805–818; (b) Hartwig, J. F.
Angew. Chem., Int. Ed. 1998, 37, 2046–2067.
10. Typical synthetic procedures for aminostilbenes have been
reported.11 Characterization data for compounds 1 and 2
are shown in the following: Compound 1: yield 27%; mp
68–69 ꢁC; 1H NMR (400 MHz CDCl3) 3.80–3.82 (m, 8H),
3.93–3.95 (m, 4H), 4.11–4.17 (m, 4H), 6.69 (dd, J = 2.2 and
8.4 Hz, 1H), 6.74 (d, J = 2.2 Hz, 1H), 6.86 (d, J = 8.4 Hz,
1H), 6.95 (d, J = 8.4 Hz, 2H), 6.98 (d, J = 16.3 Hz, 1H),
7.08 (d, J = 16.3 Hz, 1H), 7.25 (t, J = 7.2 Hz, 1H), 7.37 (t,
J = 7.5 Hz, 2H), 7.42 (d, J = 8.4 Hz, 2H), 7.51 (d,
References and notes
1. (a) de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson,
T.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.;
Rice, T. E. Chem. Rev. 1997, 97, 1515–1566; (b) Valeur, B.;
Leray, I. Coord. Chem. Rev. 2000, 205, 3–40; (c) de Silva,
A. P.; Fox, D. B.; Huxley, A. J. M.; Moody, T. S. Coord.
Chem. Rev. 2000, 205, 41–57; (d) GoKel, G. W.; Leevy, W.
M.; Weber, M. E. Chem. Rev. 2004, 104, 2723–2750.
2. For recent examples of PET-based probes, see: (a) Yang,
J.-S.; Lin, Y.-D.; Lin, Y.-H.; Liao, F.-L. J. Org. Chem.
2004, 69, 3517–3525; (b) Chen, G.; Yee, D. J.; Guberna-
tor, N. G.; Sames, D. J. Am. Chem. Soc. 2005, 127, 4544–
4545; (c) Ghosh, K.; Masanta, G. Tetrahedron Lett. 2006,
47, 2365–2369; (d) Kim, H. J.; Kim, J. S. Tetrahedron Lett.
2006, 47, 7051–7055; (e) Ueno, T.; Urano, Y.; Kojima, H.;
Nagano, T. J. Am. Chem. Soc. 2006, 128, 10640–10641.