Chemistry & Biology
Sesquiterpene Biosynthesis in S. clavuligerus
Cane, D.E., He, X., Kobayashi, S., Omura, S., and Ikeda, H. (2006). Geosmin
biosynthesis in Streptomyces avermitilis. Molecular cloning, expression, and
mechanistic study of the germacradienol/geosmin synthase. J. Antibiot.
(Tokyo) 59, 471–479.
transformations and natural product pathways (Corre and
Challis, 2009; Walsh and Fischbach, 2010). Although generic
terpene synthases from both bacterial and eukaryotic
genomes can be readily recognized by the presence of the
characteristic pair of conserved Mg2+-binding motifs, sepa-
rated in all cases by 140 5 aa, a major challenge in the
annotation of presumptive terpene synthases is the lack of
an obvious correlation between detailed protein sequence
and any specific terpene cyclization pathway. Direct
biochemical characterization is therefore indispensable for
the identification of both the actual acyclic terpene
substrate and the derived cyclization product. The
sscg_02150 and sscg_03688 gene products of S. clavulige-
rus have now been established to be (-)-d-cadinene syn-
thase and (+)-T-muurolol synthase, respectively. This repre-
sents the first isolation and characterization of either
sesquiterpene synthase from any biological source and the
first documented evidence for the occurrence of the specific
enantiomers of either sesquiterpene in a bacterial host. The
role of the two sesquiterpenes in S. clavuligerus metabolism
and the structure of the ultimately derived terpenoid metab-
olites produced by the corresponding biosynthetic gene
clusters remain unknown, as does the function of the
impressive number of remaining uncharacterized terpene
synthases that make up the S. clavuligerus terpenome.
Christianson, D.W. (2006). Structural biology and chemistry of the terpenoid
cyclases. Chem. Rev. 106, 3412–3442.
Corre, C., and Challis, G.L. (2009). New natural product biosynthetic chemistry
discovered by genome mining. Nat. Prod. Rep. 26, 977–986.
Davis, E.M., Tsuji, J., Davis, G.D., Pierce, M.L., and Essenberg, M. (1996a).
Purification of (+)-d-cadinene synthase,
a sesquiterpene cyclase from
bacteria-inoculated cotton foliar tissue. Phytochemistry 41, 1047–1055.
Davis, G.D., Essenberg, M., Berlin, K.D., Faure, R., and Gaydou, E.M. (1996b).
Complete 1H and 13C NMR spectral assignment of d-cadinene, a bicyclic
sesquiterpene hydrocarbon. Magn. Reson. Chem. 34, 156–161.
Dickschat, J.S., Martens, T., Brinkhoff, T., Simon, M., and Schulz, S. (2005).
Volatiles released by a Streptomyces species isolated from the North Sea.
Chem. Biodivers. 2, 837–865.
Ding, L., Pfoh, R., Ruhl, S., Qin, S., and Laatsch, H. (2009). T-muurolol sesqui-
terpenes from the marine Streptomyces sp. M491 and revision of the configu-
ration of previously reported amorphanes. J. Nat. Prod. 72, 99–101.
Fischbach, M., Ward, D., Young, S., Jaffe, D., Gnerre, S., Berlin, A., Heiman,
D., Hepburn, T., Sykes, S., Alvarado, L., et al. (2008). Annotation of
Streptomyces clavuligerus ATCC 27064; whole genome shotgun sequencing
project, GenBank NCBI Nucleotide Accession Nr. ABJH00000000.
Gennadios, H.A., Gonzalez, V., Di Costanzo, L., Li, A., Yu, F., Miller, D.J.,
Allemann, R.K., and Christianson, D.W. (2009). Crystal structure of (+)-d-cadi-
nene synthase from Gossypium arboreum and evolutionary divergence of
metal binding motifs for catalysis. Biochemistry 48, 6175–6183.
SUPPLEMENTAL INFORMATION
Gerber, N.N. (1971). Sesquiterpenoids from actinomycetes: Cadin-4-ene-1-ol.
Supplemental Information includes Supplemental Experimental Procedures,
seven figures, and one table and can be found with this article online at
Phytochemistry 10, 185–189.
Harada, H., Yu, F., Okamoto, S., Kuzuyama, T., Utsumi, R., and Misawa, N.
(2009). Efficient synthesis of functional isoprenoids from acetoacetate through
metabolic pathway-engineered Escherichia coli. Appl. Microbiol. Biotechnol.
81, 915–925.
ACKNOWLEDGMENTS
We thank Dr. Norihiko Misawa of Kirin Holdings Co. Ltd. Japan for providing
plasmid pAC-Mev/Scidi/AacI. This work was supported by National Institutes
of Health Grant GM30301 to D.E.C. We thank Dr. Tun-Li Shen for assistance
with mass spectrometry.
Jiang, J., He, X., and Cane, D.E. (2006). Geosmin biosynthesis. Streptomyces
coelicolor germacradienol/germacrene D synthase converts farnesyl diphos-
phate to geosmin. J. Am. Chem. Soc. 128, 8128–8129.
Lesburg, C.A., Zhai, G., Cane, D.E., and Christianson, D.W. (1997). Crystal
structure of pentalenene synthase: mechanistic insights on terpenoid cycliza-
tion reactions in biology. Science 277, 1820–1824.
Received: September 14, 2010
Revised: October 17, 2010
Accepted: November 9, 2010
Published: January 27, 2011
Medema, M.H., Trefzer, A., Kovalchuk, A., van den Berg, M., Muller, U., Heijne,
W., Wu, L., Alam, M.T., Ronning, C.M., Nierman, W.C., et al. (2010). The
sequence of a 1.8-Mb bacterial linear plasmid reveals a rich evolutionary reser-
voir of secondary metabolic pathways. Genome Biol. Evol. 2, 212–224.
REFERENCES
Nabeta, K., Mototani, Y., Tazaki, H., and Okuyama, H. (1994). Biosynthesis of
sesquiterpenes of cadinane type in cultured cells of Heteroscyphus planus.
Phytochemistry 35, 915–920.
Agger, S., Lopez-Gallego, F., and Schmidt-Dannert, C. (2009). Diversity of
sesquiterpene synthases in the basidiomycete Coprinus cinereus. Mol.
Microbiol. 72, 1181–1195.
Nabeta, K., Kigure, K., Fujita, M., Nagoya, T., Ishikawa, T., Okuyama, H., and
Takasawa, T. (1995). Biosynthesis of (+)-cubenene and (+)-epicubenol by cell-
free extracts of cultured cells of Heteroscyphus planus and cyclization of [2H]
farnesyl diphosphates. J. Chem. Soc., Perkin Trans. 1, 1935–1939.
Arigoni, D. (1975). Stereochemical aspects of sesquiterpene biosynthesis.
Pure Appl. Chem. 41, 219–245.
Benedict, C.R., Lu, J.L., Pettigrew, D.W., Liu, J., Stipanovic, R.D., and
Williams, H.J. (2001). The cyclization of farnesyl diphosphate and nerolidyl
diphosphate by a purified recombinant d-cadinene synthase. Plant Physiol.
125, 1754–1765.
Nagashima, F., and Asakawa, Y. (2001). Sesqui- and diterpenoids from two
Japanese and three European liverworts. Phytochemistry 56, 347–352.
Nagashima, F., Suda, K., and Asakawa, Y. (1994). Cadinane-type sesquiterpe-
Bohlmann, J., and Gershenzon, J. (2009). Old substrates for new enzymes of
noids from the liverwort Scapania undulata. Phytochemistry 37, 1323–1325.
terpenoid biosynthesis. Proc. Natl. Acad. Sci. USA 106, 10402–10403.
Pieper, U., Eswar, N., Webb, B.M., Eramian, D., Kelly, L., Barkan, D.T., Carter,
H., Mankoo, P., Karchin, R., Marti-Renom, M.A., et al. (2009). MODBASE,
a database of annotated comparative protein structure models and associated
resources. Nucleic Acids Res. 37, D347–D354.
Bohlmann, J., Meyer-Gauen, G., and Croteau, R. (1998). Plant terpenoid syn-
thases: molecular biology and phylogenetic analysis. Proc. Natl. Acad. Sci.
USA 95, 4126–4133.
Cane, D.E., and Tandon, M. (1995). Epicubenol synthase and the stereochem-
istry of the enzymic cyclization of farnesyl and nerolidyl diphosphate. J. Am.
Chem. Soc. 117, 5602–5603.
Walsh, C.T., and Fischbach, M.A. (2010). Natural products version 2.0: con-
necting genes to molecules. J. Am. Chem. Soc. 132, 2469–2493.
Chemistry & Biology 18, 32–37, January 28, 2011 ª2011 Elsevier Ltd All rights reserved 37