Journal of the American Chemical Society
COMMUNICATION
thiophene-based organic semiconductors.4,11 Moreover, the re-
sults also demonstrate an ability to tune the semiconducting
properties of these tetraarylethylene crystals as a function of the
bis(pyridine) agent. The most conjugated bis(pyridine) reagent
(BPE) afforded crystals with 1 exhibiting a conductivity approxi-
mately 2 orders of magnitude greater than that for crystals
obtained from 4,40-bipyridine, while crystals derived from 1 and
nonconjugated BPEt were comparatively nonconducting. These
conducting properties correlate nicely with the calculated DOS
which revealed a systematic lowering of the lowest unoccupied
conduction orbital (LUCO) energy in the series 1 BPEt, 1 Bpy,
’ ACKNOWLEDGMENT
We thank the Department of Chemistry, University of Iowa. F.
C.P. thanks the College of Liberal Arts & Sciences and the
Obermann Center for Advanced Studies for sponsorship of a
Career Development Award.
’ REFERENCES
(1) (a) Desiraju, G. R. Crystal Engineering ꢁ The Design of Organic
Solids; Elsevier: Amsterdam, 1989. (b) Frontiers in Crystal Engineering;
Tiekink, E. R. T., Vittal, J., Eds.; John Wiley & Sons: Chichester, 2006.
(c) Pigge, F. C. CrystEngComm 2011, 13, 1733–1748.
(2) (a) Fourmiguꢀe, M.; Batail, P. Chem. Rev. 2004, 104, 5379–5418.
(b) Bryce, M. R. J. Mater. Chem. 1995, 5, 1481–1496.
3
3
and 1 BPE (compare Figures 4, S16, and S17). Coupled with the
3
nearly identical HOCO energies across the series, the net effect of
LUCO lowering was a narrowing of the crystal band gap energy.
Currently the relative contributions of 1 and the bis(pyridine)
moieties in governing charge mobility are not known. The high
(3) (a) Anthony, J. E. Angew. Chem., Int. Ed. 2008, 47, 452–483.
(b) Anthony, J. E. Chem. Rev. 2006, 106, 5028–5048.
(4) (a) Murata, T.; Morita, Y.; Fukui, K.; Sato, K.; Shiomi, D.; Takui,
T.; Maesato, M.; Yamochi, H.; Saito, G.; Nakasuji, K. Angew. Chem., Int.
Ed. 2004, 43, 6343–6346. (b) Murata, T.; Morita, Y.; Yakiyama, Y.;
Fukui, K.; Yamochi, H.; Saito, G.; Nakasuji, K. J. Am. Chem. Soc. 2007,
129, 10837–10846. (c) Baudron, S. A.; Avarani, N.; Batail, P.; Coulon,
C.; Clꢀerac, R.; Canadell, E.; Auban-Senzier, P. J. Am. Chem. Soc. 2003,
125, 11583–11590. (d) Payne, M. M.; Parkin, S. R.; Anthony, J. E.; Kuo,
C.-C.; Jackson, T. N. J. Am. Chem. Soc. 2005, 127, 4986–4987. (e) Moon,
H.; Zeis, R.; Borkent, E.-J.; Besnard, C.; Lovinger, A. J.; Siegrist, T.; Kloc,
C.; Bao, Z. J. Am. Chem. Soc. 2004, 126, 15322–15323. (f) Gs€anger, M.;
Oh, J. H.; K€onemann, M.; H€offken, H. W.; Krause, A.-M.; Bao, Z.;
W€urthner, F. Angew. Chem., Int. Ed. 2010, 49, 740–743. (g) Sokolov,
A. N.; Friꢁsꢁciꢀc, T.; MacGillivray, L. N. J. Am. Chem. Soc. 2006,
128, 2806–2807. (h) Lꢀopez, J. L.; Atienza, C.; Seitz, W.; Guldi, D. M.;
Martín, N. Angew. Chem., Int. Ed. 2010, 49, 9876–9880.
(5) (a) Hong, Y.; Lam, J. W. Y.; Tang, B. Z. Chem. Commun.
2009, 4332–4353. (b) Mori, T.; Inoue, Y. J. Phys. Chem. A 2005,
109, 2728–2740. (c) Banerjee, M.; Emond, S. J.; Lindeman, S. V.;
Rathore, R. J. Org. Chem. 2007, 72, 8054–8061. (d) Schreivogel, A.;
Maurer, J.; Winter, R.; Baro, A.; Laschat, S. Eur. J. Org. Chem.
2006, 3395–3404. (e) H€unig, S.; Kemmer, M.; Wenner, H.; Barbosa,
F.; Gescheidt, G.; Perepichka, I. F.; B€auerle, P.; Emge, A.; Peters, K.
Chem.—Eur. J. 2000, 6, 2618–2632. (f) Wolf, M. O.; Fox, H. H.; Fox,
M. A. J. Org. Chem. 1996, 61, 287–294.
conductivity exhibited by 1 BPE and the absence of conductivity
3
in 1 BPEt despite their isostructural crystalline networks see-
3
mingly suggests a crucial role for the bis(pyridine) units as
principal charge carriers. In the case of 1 BPE, the combination
3
of protonated BPE molecules arranged in roughly cofacial
orientations and π-conjugation between facially stacked rings
may facilitate charge transport in two dimensions (see Figures 2b,
S1, and S2). In line with this conjecture, the diminished conjuga-
tionin1 Bpy may contribute totheattenuated conductivityinthis
3
sample while the absence of conjugation in BPEt renders this
crystal an insulator.12 This model relegates 1 to the role of a
crystalline scaffold that properly orients and activates (through
protonation/H-bonding) the pyridine components for charge
transport. In this regard, other relatively simple polycarboxylic
acids may fulfill a similar function and studies exploring this
possibility are underway. Alternatively, 1 may also contribute in
some degree to the conducting properties of these assemblies as a
consequence of intermolecular arene edge-to-face interactions
and/or participation in extended H-bonded networks.13 The
synthetic accessibility of additional tetraarylethylene and bis-
(pyridine) derivatives should facilitate formulation of systematic
structureꢁactivity studies designed to shed light on this issue.
In conclusion, we have successfully prepared and character-
ized a series of stable crystalline composites from acetic acid
substituted tetraphenylethylene and three bis(pyridine)s. Two of
these supramolecular assemblies were found to exhibit electrical
conductivities comparable to those of established organic semi-
conductors as determined through CP-AFM. Importantly, the
conducting properties of these crystals can be modulated as a
function of a bis(pyridine) partner, opening exciting opportu-
nities for construction of new tunable electroactive organic
materials. This study also illustrates the potential of tetraary-
lethylenes to serve as attractive supramolecular building blocks.
(6) Schultz, A.; Diele, S.; Laschat, S.; Nimtz, M. Adv. Funct. Mater.
2001, 11, 441–446.
(7) Rathore, R.; Lindeman, S. V.; Kumar, A. S.; Kochi, J. K. J. Am.
Chem. Soc. 1998, 120, 6931–6939.
(8) Dovesi, R.; Saunders, V. R.; Roetti, R.; Orlando, R.; Zicovich-Wilson,
C. M.; Pascale, F.; Civalleri, B.; Doll, K.; Harrison, N. M.; Bush, I. J.;
D’Arco, P.; Llunell, M. CRYSTAL’09; University of Torino: Torino,
Italy, 2009.
(9) (a) Kao, K. C.; Hwang, W. Electrical Transport in Solids; Pergamon:
Oxford, 1981; Chapter 3. (b) Coropceanu, V.; Cornil, J.; da Silva Filho,
D. A.; Olivier, Y.; Silbey, R.; Brꢀedas, J.-L. Chem. Rev. 2007, 107, 926–952.
(10) (a) Brown, A. R.; de Leeuw, D. M.; Havinga, E. E.; Pomp, A.
Synth. Met. 1994, 68, 65–70. (b) Paasch, G.; Lindner, T.; Scheinert, S.
Synth. Met. 2002, 132, 97–104.
(11) Molinari, A. S.; Alves, H.; Chen, Z.; Facchetti, A.; Morpurgo,
A. F. J. Am. Chem. Soc. 2009, 131, 2462–2463 and references cited.
(12) We expect the magnitude of conductivity to also depend on the
orientation of the crystal with respect to the AFM surface and tip.
Measurements in this study were performed on randomly oriented
crystals, and so mobility values likely represent an average from multiple
crystal orientations.
(13) (a) Miao, Q.; Chi, X.; Xiao, S.; Zeis, R.; Lefenfeld, M.; Siegrist, T.;
Steigerwald, M. L.; Nuckolls, C. J. Am. Chem. Soc. 2006, 128, 1340–1345.
(b) Morita, Y.; Murata, T.; Fukui, K.; Yamada, S.; Sato, K.; Shiomi, D.;
Takui, T.; Kitagawa, H.; Yamochi, H.; Saito, G.; Nakasuji, K. J. Org. Chem.
2005, 70, 2739–2744.
’ ASSOCIATED CONTENT
S
Supporting Information. Synthesis and characterization
b
details of 1 and 1 bis(pyridine) crystals, crystallographic data,
3
additional structural details, description of computational meth-
ods, details of CP-AFM measurements and conductivity calcula-
tions, PXRD, TGA, CIF files. This information is available free of
’ AUTHOR INFORMATION
Corresponding Author
8493
dx.doi.org/10.1021/ja203001z |J. Am. Chem. Soc. 2011, 133, 8490–8493