2
162
G. Suresh et al. / Journal of Magnetism and Magnetic Materials 324 (2012) 2158–2162
synthesis of Sm-Co alloy nanoparticles obtained through the
facile sol-gel process. The major difficulty faced in the present
work was the control of oxidation of metals and consecutive
removal of oxides to achieve alloy nanoparticles. The existence of
[13] C.N. Chinnasamy, J.Y. Huang, L.H. Lewis, B. Latha, C. Vittoria, V.G. Harris,
Direct chemical synthesis of high coercivity air-stable SmCo nanoblades,
Applied Physics Letters 93 (2008) 032505.
[
14] C.N. Chinnasamy, J.Y. Huang, L.H. Lewis, C. Vittoria, V.G. Harris, Erratum:
Direct chemical synthesis of high coercivity SmCo nanoblades, Applied
Physics Letters 93 (2008) 032505. Applied Physics Letters 97 (2010) 059901.
15] C. Liu, Xiaowei Wu, Timothy Klemmer, Nisha Shukla, Xiaomin Yang,
Dieter Weller, Anup G. Roy, Mihaela Tanase and David Laughlin, Polyol
Process Synthesis of Monodispersed FePt Nanoparticles, The Journal of
Physical Chemistry B 108 (2004) 6121–6123.
SmCo
sample annealed at 600 1C, induces crystallization of fcc-Co and
Sm which deteriorated the SmCo crystallographic phase
5
phase is witnessed only in the case of SMC-3 sample. The
[
2
C
3
5
completely. All the synthesized samples showed room tempera-
ture ferromagnetic behavior. The control of oxidation and growth
of fcc-Co by modifying the existing synthesis protocols may
trigger a new path way for the large-scale synthesis of nanopar-
ticles of Sm-Co alloys towards fabrication of nanostructured hard
magnets for sophisticated applications.
[
16] Petr Vany s´ ek, Electrochemical Series, in: David R. Lide (Ed.), CRC Handbook of
Chemistry and Physics, 87th Edition,Taylor and Francis, Boca Raton, FL, 2007.
8–20-8–29.
[17] B.L. Cushing, Vladimir L. Kolesnichenko, Charles J. O’Connor, Recent Advances
in the Liquid-Phase Syntheses of Inorganic Nanoparticles, Chemical Reviews
104 (2004) 3893–3946.
[
18] C.B. Rong, D. Li, V. Nandwana, N. Poudyal, Y. Ding, Z.L. Wang, H. Zeng, J.P. Liu,
Size-Dependent Chemical and Magnetic Ordering in L10-FePt Nanoparticles,
Advanced Materials (Weinheim, Germany) 18 (2006) 2984–2988.
Acknowledgments
[19] W.S. Seo, Jin Hyung Lee, Xiaoming Sun, Yoriyasu Suzuki, Davidmann,
Zhuang Liu, Masahiro Terashima, Philip C. Yang, Michael V. Mcconnell,
Dwight G. Nishimura, Hongjie Dai, FeCo/graphitic-shell nanocrystals as
advanced magnetic-resonance-imaging and near-infrared agents, Nature
materials 5 (2006) 971–976.
Authors G.S. and D.R.B. thank VIT University for the financial
support, G.S. acknowledges the VIT University for the Research
Associateship offered to him.
[
20] H. Wang, S.P. Wong, W.Y. Cheung, N. Ke, W.F. Lau, M.F. Chiah, X.X. Zhang,
Structural and magnetic properties of Co65C35 nanocomposite films pre-
pared by pulsed filtered vacuum arc deposition, Materials Science and
Engineering, C: Materials for Biological Applications 16 (2001) 147–151.
21] R.N. Panda, J.C. Shih, T.S. Chin, Magnetic properties of nano-crystalline Gd-or
Prsubstituted CoFe2O4 synthesized by the citrate precursor technique,
Journal of Magnetism and Magnetic Materials 257 (2003) 79–86.
References
[
[
[
1] O. Gutfleisch, Rare Earth Magnets: Materials, in: K.H.J. Buschow (Ed.), Concise
Encyclopedia of Magnetic & Superconducting Materials, 2nd Edition,Elsevier
Ltd., Oxford, 2005, pp. 1083–1086.
2] O. Gutfleisch, High-Temperature Samarium Cobalt Permanent Magnets, in:
J.Ping Liu, et al.et al.(Eds.), Nanoscale Magnetic Materials and Applications,
Springer, New York, 2009, pp. 337–372.
[
[
22] N.S. Gajbhiye, Seema Prasad, Thermal decomposition of hexahydrated nickel
iron citrate, Thermochimica Acta 285 (1996) 325–336.
23] Y. Zhang, Girija S. Chaubey, Chuanbing Rong, Yong Ding, Narayan Poudyal,
Poching Tsai, Qiming Zhang, J. Ping Liu, Controlled synthesis and magnetic
properties of hard magnetic CoxC (x¼2, 3) nanocrystals, Journal of Magnet-
ism and Magnetic Materials 323 (2011) 1495–1500.
[
[
3] Y. Khan, A Contribution to the Sm-Co Phase Diagram, Acta Crystallographica
B 30 (1974) 861–863.
4] G.C. Hadjipanayis, Magnets: High-temperature, in: K.H.J. Buschow (Ed.), Con-
[
24] J.M. Haschke, Thomas A Deline, Vaporization and thermodynamic properties
of samarium dicarbide and sub-stoichiometric disamarium tricarbide, Jour-
nal of Chemical Thermodynamics 14 (1982) 1019–1028.
nd
cise Encyclopedia of Magnetic and Superconducting Materials, 2 Edition,
Elsevier Ltd., Oxford, 2005, pp. 866–870.
[25] H.W. Chang, S.T. Huang, C.W. Chang, W.C. Chang, A.C. Sun, Y.D. Yao, Effect of
C addition on the magnetic properties, phase evolution, and microstructure
[
5] Y. Hou, Zhichuan Xu, Sheng Peng, J.Ping Chuanbing Rong, Liu, and Shouheng
Sun,
Nanoparticles, Advanced Materials (Weinheim, Germany) 19 (2007)
349–3352.
A Facile Synthesis of SmCo5 Magnets from Core/Shell Co/Sm2O3
of melt spun SmCo7ꢀxHf
47 (2008) 69–73.
26] P.K. Deheri, Viswanathan Swaminathan, Shekhar D. Bhame, Zhongwu Liu,
Raju V. Ramanujan, Sol-Gel Based Chemical Synthesis of Nd Fe14B Hard
x
(x¼0.1–0.3) ribbons, Solid State Communications
1
3
[
[
[
[
6] Y. Wang, Yang Li, Chuan bing Rong and J Ping Liu, Sm-Co hard magnetic
nanoparticles prepared by surfactant-assisted ball milling, Nanotechnology
2
Magnetic Nanoparticles, Chemistry of Materials
:
A
Publication of the
1
8 (2007) 465701.
American Chemical Society 22 (2010). 6509-6417.
7] G.S. Chaubey, Narayan Poudyal, Yuzi Liu, Chuanbing Rong, J. Ping Liu,
Synthesis of Sm-Co and Sm-Co/Fe nanocrystals by reductive annealing of
Nanoparticles, Journal of Alloys and Compounds 509 (2011) 2132–2136.
8] T. Matsushita, Takashi Iwamoto, Makoto Inokuchi, Naoki Toshima, Novel
ferromagnetic materials of SmCo5 nanoparticles in single-nanometer size:
chemical syntheses and characterizations, Nanotechnology 21 (2010)
[
[
27] J. Jiu, Yue Ge, Xiaoning Li, Ling Nie, Preparation of Co O nanoparticles by a
3 4
polymer combustion route, Materials Letters 54 (2002) 260–263.
28] X.W. Wei, Guo-Xing Zhu, Yuan-Jun Liu, Yong-Hong Ni, You Song, Zheng Xu,
Large-Scale Controlled Synthesis of FeCo Nanocubes and Microcages by Wet
chemistry, Chemistry of Materials : A Publication of the American Chemical
Society 20 (2008) 6248–6253.
095603.
[
29] A. Tomou, D. Gournis, I. Panagiotopoulos, Y. Huang, G.C. Hadjipanayis,
B.J. Kooi, Weak ferromagnetism and exchange biasing in cobalt oxide
nanoparticle systems, Journal of Applied Physics 99 (2006) 123915.
[
9] P. Saravanan, G. Venkata Ramana, K. Srinivasa Rao, B. Sreedhar, V.T.P. Vinod,
V. Chandrasekaran, Structural and magnetic properties of self-assembled
Sm–Co spherical aggregates, Journal of Magnetism and Magnetic Materials
3
23 (2011) 2083–2089.
[30] X. Batlle, Am ı´ lcar Labarta, Finite-size effects in fine particles: magnetic and
transport properties, Journal of Physics D: Applied Physics 35 (2002)
R15–R42.
[31] R.H. Kodama, Salah A. Makhlouf, A.E. Berkowitz, Finite Size Effects in
Antiferromagnetic NiO Nanoparticles, Physical Review Letters 79 (1997)
1393–1396.
[32] C.D. Graham Jr., T. Egami, Magnetic Properties of Amorphous Alloys, Annual
Review of Materials Science 8 (1978) 423–457.
[33] D.L. Leslie-Pelecky, R.L. Schalek, Effect of disorder on the magnetic properties
of SmCo5, Physical Review B 59 (1999) 457–462.
[
[
[
10] P. Saravanan, G. Venkata Ramana, K. Srinivasa Rao, B. Sreedhar, A. Perumal,
Thin magnetic films of Sm–Co nanocrystallites exploiting spin coating
deposition, Thin Solid Films 519 (2011) 6290–6296.
11] P. Saravanan, K. Srinivasa Rao, D. Mishra, A. Perumal, V. Chandrasekaran,
One-Step Synthesis of Sm-Co Spherical Granules via Superhydride Reduction,
Advanced Science Letters 3 (2010) 49–52.
12] V.G. Harris, Y. Chen, A. Yang, S. Yoon, Z. Chen, A.L. Geiler, J. Gao,
C.N. Chinnasamy, L.H. Lewis, C. Vittoria, E.E. Carpenter, K.J. Carroll,
R. Goswami, M.A. Willard, L. Kurihara, M. Gjoka, O. Kalogirou, High coercivity
cobalt carbide nanoparticles processed via polyol reaction: a new permanent
magnet material, Journal of Physics D: Applied Physics 43 (2010) 165003.
[34] R.N. Grass, Wendelin J. Stark, Gas phase synthesis of fcc-cobalt nanoparticles,
Journal of Materials Chemistry 16 (2006) 1825–1830.