STUDIES ON TRANSITION METAL MUREXIDE COMPLEXES
1
1
1
1
1
2 M. S. Masoud, S. A. Abou El-Enein and O. F. Hafez,
J. Thermal Anal., 38 (1992) 1365.
3 M. S. Masoud, O. H. Abd El-Hamid and Z. M. Zaki,
Transition Met. Chem., 19 (1994) 21.
4 M. S. Masoud, A. A. Hasanein, A. K. Ghonaim, E. A. Khalil
and A. A. Mahmoud, Z. Phys. Chem., 209 (1999) 223.
5 M. S. Masoud, E. A. Khalil, A. A. Ibrahim and
A. A. Marghany, Z. Phys. Chem., 211 (1999) 13.
6 M. S. Masoud, A. K. Ghonaim, R. H. Ahmed,
A. A. Mahmoud and A. E. Ali, Z. Phys. Chem.,
stable even above 800°C. The thermal mode of decom-
position of the murexide complex VII indicates that it is
thermally stable up to 100°C. The thermal decomposi-
tion appears to take place in two stages, one is endother-
mic and the other is exothermic at 138 and 280°C, re-
spectively. The final decomposition product was
estimated as CuO. TG of the complex VIII starts to de-
compose around 118°C. This stage continues until
149°C and one water molecule is eliminated. The main
degradation step starts around 368°C in the last step.
2
15 (2001) 53.
17 M. S. Masoud, A. K. Ghonaim, S. A. Abou El-Enein and
A. A. Mahmoud, J. Coord. Chem., 55 (2003) 79.
8 M. S. Masoud, A. A. Soayed, A. E. Ali and O. K. Sharsherh,
J. Coord. Chem., 56 (2003) 725.
9 M. S. Masoud, S. A. Abou El-Enein and N. A. Obeid,
Z. Phys. Chem., 215 (2001) 867.
Residue, in this case, is again CuCl . Thermal dehydra-
2
1
tion of complex IX apparently occurs in three steps. The
DE and n values were found to be 41.00, 164.40 and
a
1
–1
16.00 kcal mol and 1.32, 1.32 and 0.57, respectively.
The mass loss at 115°C accounts for the endothermic
elimination of a water molecule and the formation of a
stable solid intermediate. The decomposition process is
20 M. S. Masoud, S. A. Abou El-Enein, H. A. Motaweh and
A. E. Ali, J. Therm. Anal. Cal., 74 (2003) 1.
21 A. I. Vogel, A Text Book of Quantitative Inorganic Analysis,
Fourth Ed., Longmann, London, 452 (1978) 116.
–1
about first order with a DE value of 41.00 kcal mol .
a
22 P. H. Lee, E. Griswold and J. Kleinberg, Inorg. Chem.,
The major decomposition is observed in the temperature
range 386–421°C with a mass loss to yield ZnO. The or-
der of dehydration of the complex was found to be 1.32
while the order of decomposition was 0.57. The ener-
gies of activation of dehydration were somewhat lower
than that of the second stage of decomposition. The
DTA curve of the complex X shows two peaks, endo-
thermic and exothermic corresponding to the first and
last step of the TG curves. First step in the decomposi-
tion of the complex at 162°C is accompanied by endo-
thermic effect in the DTA curves with the evolution of
one molecule of HCl moiety from the complex. Last
step in the thermal decomposition involves the decom-
position of intermediates and oxidation of metal by at-
mospheric oxygen.
3
23 D. Reinen and G. Friebel, Inorg. Chem., 23 (1984) 791.
(1964) 1278.
2
2
2
4 N. B. Figgs and J. Lewis, Modern Coordination Chemistry,
Interscience, New York 1967, p. 403.
5 R. L. Martin, A. H. White and A. C. Willis, J. Chem. Soc.,
Dalton, Trans., 1336 (1977).
6 D. K. Johonson, H. J. Stklosa, J. R. Wasson and
W. L. Seebach, J. Inorg. Nucl. Chem., 37 (1975) 1397.
7 B. F. Little and G. J. Long, Inorg. Chem., 17 (1978) 3401.
8 D. B. Brown, J. W. Hall, H. M. Helis, E. G. Walton,
D. J. Hodgson and W. E. Halfield, Inorg. Chem.,
2
2
16 (1977) 2675.
2
3
3
3
9 W. Levason and C. M. MacAulife, Inorg. Chim. Acta,
14 (1975) 127.
0 S. C. Bhtia, J. M. Bindlish, A. R. Saini and P. C. Jain,
J. Chem. Soc., Dalton Trans., 1773, (1981).
1 I. Saski, D. Pujol, A. Gauderner, A. Chiaroni and C. Riche,
Polyhedron, 6 (1987) 2103.
2 R. K. Parasher, R. C. Sharma, A. Kumar and G. Hohan,
Inorg. Chim. Acta, 72 (1988) 201.
References
33 H. A. Kuska, M. T. Rogers and R. E. Drullinger,
J. Phys. Chem., 71 (1967) 109.
1
2
W. Grochala and J. Bukowska, Vibrational Spectroscopy,
7 (1998) 145.
34 D. R. Lorenz, J. R. Wasson, D. K. Johonson and
D. A. Thorpe, J. Inorg. Nucl. Chem., 37 (1975) 2297.
35 D. K. Johonson, H. J. Stklosa, J. R. Wasson and
W. L. Seebach, J. Inorg. Nucl. Chem., 37 (1975) 1397.
36 B. A. Stastry, S. M. Asdullah, G. Ponticelli and
M. Massacesi, J. Chem. Phys., 70 (1979) 2834.
37 M. H. Sonar and A. S. R. Murty, J. Inorg. Nucl. Chem.,
42 (1980) 815.
38 H. E. Kissinger, Anal. Chem., 29 (1957) 1702.
39 H. Horowitz and G. Metzger, Anal. Chem., 35 (1963) 1464.
40 K. G. Mallikarjum and A. K. Bansal, Thermochim. Acta,
206 (1992) 273.
1
K. Grudpan, J. Jakmunee, Y. Vaneesorn, S. Watanesk,
U. A. Maung and P. Sooksamiti, Talanta, 46 (1998) 1245.
T. K. Khan and P. B. Gupta, Talanta, 44 (1997) 2087.
Y. T. Nakamura, H. Shata, M. Minao, H. Ogawa,
N. Sekiguchi, M. Murata and S. Homma,
Lebensmittel Wissenschaft und Technologie, 27 (1994) 115.
J. Ghasemi and M. Shamsipur, Polyhedron, 15 (1996) 923.
M. S. Masoud, E. M. Soliman, A. E. El-Kholy and
E. A. Khalil, Thermochim. Acta, 1 (1988) 153.
M. S. Masoud and Z. M. Zaki, Trans. Met. Chem.,
13 (1988) 321.
M. S. Masoud, E. M. Soliman and A. M. Heiba,
Transition Met. Chem., 14 (1989) 175.
M. S. Masoud and S. A. Abou El-Enein, Thermochim. Acta,
3
4
5
6
7
8
9
41 S. S. Sawhney and A. K. Bansal, Thermochim. Acta,
66 (1983) 347.
Received: March 30, 2005
Accepted: May 26, 2005
OnlineFirst: January 11, 2006
140 (1989) 365.
1
1
0 M. S. Masoud, S. A. Abou El-Enein and E. El-Shereafy,
J. Thermal Anal., 37 (1991) 365.
1 M. S. Masoud and S. S. Haggag, Thermochim. Acta,
196 (1992) 221.
DOI: 10.1007/s10973-005-9991-3
J. Therm. Anal. Cal., 84, 2006
555