2732
P. Mohan et al. / Tetrahedron Letters 53 (2012) 2730–2732
reagent used. Swern conditions proved to be harsh on our sub-
strate as we encountered an elimination of one of the MOM group
in low yield.16 Given the sensitive nature of substrate, we opted for
a milder oxidation. TPAP/NMO condition was found to be ideal for
this transformation and gave the requisite aldehyde 6 in 78%
yield.17
Acknowledgement
We would like to thank the Texas Tech University for providing
financial support to this research.
Supplementary data
The synthesis of phosphonate 7 began with mono-TBS protec-
tion of neo-pentyl glycol. Subsequent Swern oxidation gave alde-
hyde 21. Ester 22 was generated in a good yield upon subjection
of aldehyde to Horner–Emmons–Wadsworth olefination.18 Alcohol
23 was obtained after TBS-deprotection under acidic conditions;
after which Swern oxidation afforded aldehyde 24 in 92% yield. A
Wittig olefination was employed to convert aldehyde into diene
25 (Scheme 3).19 After repeated failures in performing the desired
regioselective reduction of a double bond utilizing Wilkinson’s cat-
alyst along with triethylsilane, we modified our synthetic scheme.
Supplementary data associated with this article can be found, in
References and notes
1. (a) Molnár, J.; Gyémánt, N.; Tanaka, M.; Hohmann, J.; Bergmann-Leitner, E.;
Molnár, P.; Deli, J.; Didiziapetris, R.; Ferreira, M. J. U. Curr. Pharm. Des. 2006, 12,
287; (b) Teodori, E.; Dei, S.; Martelli, C.; Scapecchi, C.; Gualtieri, F. Curr. Drug
Targets 2006, 7, 893.
a
,b-Unsaturated ester 24 was hydrogenated under 60 psi
2. (a) Kupchan, S. M.; Sigel, C. W.; Matz, M. J.; Renauld, J. A. S.; Haltiwanger, R. C.;
Bryan, R. F. J. Am. Chem. Soc. 1970, 92, 4476; (b) Kupchan, S. M.; Sigel, C. W.;
Matz, M. J.; Gilmore, C. J.; Bryan, R. F. J. Am. Chem. Soc. 1976, 98, 2295.
3. Smith, A. B., III; Guaciaro, M. A.; Schow, S. R.; Wovkulich, P. M.; Toder, B. H.;
Hall, T. W. J. Am. Chem. Soc. 1981, 103, 219.
4. (a) Gyorkos, A. C.; Stille, J. K.; Hegedus, L. S. J. Am. Chem. Soc. 1990, 112, 8465;
(b) Stille, J. K. Angew. Chem., Int. Ed. Engl. 1986, 25, 508; (c) Crisp, G. T.; Scott, W.
J.; Stille, J. K. J. Am. Chem. Soc. 1984, 106, 7500.
5. (a) Hiersemann, M.; Helmboldt, H.; Rehbein, J. Tetrahedron Lett. 2004, 45, 289;
(b) Schnabel, C.; Hiersemann, M. Org. Lett. 2009, 11, 2555; (c) Schnabel, C.;
Sterz, K.; Müller, H.; Rehbein, J.; Wiese, M.; Hiersemann, M. J. Org. Chem. 2011,
76, 512.
6. (a) Grubbs, R. H. Tetrahedron 2004, 60, 7117; (b) Nicolaou, K. C.; Bulger, P. G.;
Sarlah, D. Angew. Chem., Int. Ed. 2005, 44, 4490; (c) Deiters, A.; Martin, S. F.
Chem. Rev. 2004, 104, 2199.
7. Schmidt, U.; Langner, J.; Kirschbaum, B.; Brau, C. Synthesis 1994, 1138.
8. Howard, E. G.; Lindsey, R. V. J. Am. Chem. Soc. 1960, 82, 158.
9. Oi, R.; Sharpless, K. B. Org. Synth. 1998, 9, 251.
10. Hagiwara, H.; Uda, H. J. Chem. Soc., Chem. Commun. 1987, 1357.
11. Honda, T.; Yoshizawa, H.; Sundararajan, C.; Gribble, G. W. J. Org. Chem. 2006,
71, 3314.
12. Yu, W.; Mei, Y.; Kang, Y.; Hua, Z.; Jin, Z. Org. Lett. 2004, 6, 3217.
13. Corey, E. J.; Snider, B. B. J. Am. Chem. Soc. 1972, 94, 2549.
14. Corey, E. J.; Suggs, W. Tetrahedron Lett. 1975, 16, 2647.
hydrogen atmosphere using Pd/C (Scheme 4). Saturated ester 26
was obtained and subjected to Wittig olefination to yield ester
27, which upon treatment with lithiated ethylphosphonate fur-
nished the target phosphonate 7.
We were now set for the key HEW olefination between bis-
MOM aldehyde 6 and phosphonate 7 to provide triene 5. Unfortu-
nately, the two fragments did not couple under various conditions.
Frequently, we observed that one of the MOMOÀ groups of alde-
hyde 6 was being eliminated (Scheme 5). We rationalized the elim-
ination of MOMOÀ group was made possible through the
deprotonation of
mechanism.
a-carbon hydrogen, followed by an E1cb
Apparently, aldehyde 6 is sensitive and prone to b-elimination
even under the mildest basic conditions. Nevertheless we at-
tempted to couple the two fragments under various conditions
employing different bases but to our disappointment none of these
methods afforded the desired product 5 (Table 1).
Generally, we observed the b-eliminated product 27 when we
employed strong bases such as n-BuLi and NaH, and the use of
milder bases resulted in no reaction. Another reason which might
be hindering the formation of the desired enone 5 is the fact that
aldehyde 6 is sterically congested, thereby slowing down the
nucleophilic addition step. An alternative pathway to furnish en-
one with inducing minimal structural changes in the existing syn-
thetic scheme is under investigation and is subjected for future
communication.
15. Mancuso, A. J.; Huang, S. L.; Swern, D. J. Org. Chem. 1978, 43, 2480.
16. Ley, V. S.; Norman, J.; Griffith, W. P.; Marsden, S. P. Synthesis 1994, 7, 639.
17. Blanchette, M. A.; Choy, W.; Davis, J. T.; Essenfeld, A. P.; Masamune, S.; Roush,
W. R.; Sakai, T. Tetrahedron Lett. 1984, 25, 2183.
18. Fitjier, L.; Quabeck, U. Synth. Commun. 1985, 15, 855.
19. (a) Ojima, I.; Nihonyanagi, M.; Nagai, Y. J. Chem. Soc., Chem. Commun. 1972, 8,
938; (b) Ojima, I.; Li, Z.; Zhu, J. In The Chemistry of Organic Silicon Compounds;
Wiley: New York, 1998; Vol. 2, Chapter 29; (c) Ojima, T.; Kogure, M.; Kumagai,
S.; Horiuchi, Y.; Sato, J. Organomet. Chem. 1976, 122, 83.