Y. Wang et al.
Acknowledgements We gratefully acknowledge the Natural Science
Foundation of Guangdong Province (Grant No. 2018A030307022),
Special Innovation Projects of Common Universities in Guangdong
Province (Grant No. 2018KTSCX126).
Enantiomeric excess was determined by HPLC with a
CHIRALPAK AD-H column (90:10 hexane: 2-propanol),
25 °C, 254 nm, 0.5 mL/min; major enantiomer tr=13.4 min,
minor enantiomer tr=14.3 min.
Compliance with Ethical Standards
4.7 2‑(Hydroxy(4‑nitrophenyl)methyl)
cyclohexanone
Conflict of interest All authors of this paper are aware of the submis-
sion and agree to its publication and declare no conficts of interest.
1H NMR (400 MHz, CDCCl3): δ 8.21 (d, J=8.1 Hz, 2H),
7.50 (d, J=7.4 Hz, 2H), 5.49 (s, 0.45H), 4.90 (d, J=8.4 Hz,
0.45H), 4.08(s, 0.55H), 3.17(s, 0.47H), 2.64–2.56 (m,
J = 13.8 Hz, 1H), 2.54–2.45 (m, 1H), 2.44–2.38 (m,
J=19.3 Hz, 1H), 2.15−2.10 (d, J=12.8 Hz, 1H), 1.83 (d,
J=12.7 Hz, 1H), 1.73−1.45 (m, 4H). Enantiomeric excess
was determined by HPLC with a CHIRALPAK AD-H col-
umn (90:10 hexane:
Research Involving Human and Animal Participants This study does
not cover human participants and/or animal studies.
References
1. Guarneri A, van Berkel WJ, Paul CE (2019) Alternative coen-
zymes for biocatalysis. Curr Opin Biotechnol 60:63–71
2. Turner NJ, Kumar R (2018) Editorial overview: biocatalysis and
biotransformation: the golden age of biocatalysis. Curr Opin
Chem Biol 43:A1–A3
2-propanol), 25 °C, 254 nm, 1.0 mL/min; major enanti-
omer tr=25.4 min, minor enantiomer tr=18.9 min.
3. Dwivedee BP, Soni S, Sharma M, Bhaumik J, Laha JK, Banerjee
UC (2018) Promiscuity of lipase catalyzed reactions for organic
synthesis: a recent update. ChemistrySelect 3(9):2441–2466
4. He W-X, Xing X, Yang Z-J, Yu Y, Wang N, Yu X-Q (2019)
Biocatalytic one-pot three-component synthesis of indolo-
quinolizines with high diastereoselectivity. Catal Lett
249(2):638–643
4.8 2‑(Hydroxy(4‑nitrophenyl)methyl)
cyclopentanone
1H NMR (400 MHz, CD3COCD3): δ 8.22 (d, J = 7.6 Hz,
2H), 7.53 (d, J = 8.1 Hz, 2H), 5.43 (s, 0.43H), 4.85 (d,
J=9.2 Hz, 0.50H), 4.77(s, 0.62H), 2.57(s, 0.44H), 2.53–2.09
(m, 3H), 2.00(s,1H), 1.90 -1.44 (m, 3H).
5. Koszelewski D, Ostaszewski R (2019) Biocatalytic promiscu-
ity of lipases in carbon-phosphorus bond formation. Chem-
CatChem 11(10):2554–2558
Enantiomeric excess was determined by HPLC with a
CHIRALPAK AD-H column (95:5 hexane: 2-propanol),
25 °C, 254 nm, 1.0 mL/min; major enantiomer tr=23.2 min,
minor enantiomer tr=18.6 min.
6. Cai J-F, Guan Z, He Y-H (2011) The lipase-catalyzed
asymmetric C-C Michael addition. J Mol Catal B: Enzym
68(3–4):240–244
7. Rizzo PVS, Boarin LA, Freitas IOM, Gomes RS, Beatriz A,
Rinaldi AW, Domingues NLC (2014) The study of biocatalyzed
thio-Michael reaction: a greener and multi-gram protocol. Tet-
rahedron Lett 55(2):430–434
4.9 (E)‑2‑(1‑hydroxy‑3‑phenylallyl)cyclohexanone
8. Jiang L, Wang B, Li R-R, Shen S, Yu H-W, Ye L-D (2014)
Catalytic promiscuity of Escherichia coli BioH esterase: appli-
cation in the synthesis of 3,4-dihydropyran derivatives. Process
Biochem 49(7):1135–1138
1H NMR (400 MHz, CDCl3): δ 7.60–7.30 (m, 5H), 6.73
(d, J = 16.0 Hz, 1H), 6.27 (d, J = 11.8 Hz, 1H), 4.33
(m, J = 8.6 Hz, 1H), 3.66 (m, J = 9.8 Hz, 1H), 3.53 (m,
J=7.0 Hz, 1H), 2.03 (d, J=8.4 Hz, 2H), 1.95–1.49 (m, 6H).
Enantiomeric excess was determined by HPLC with a
CHIRALPAK AD-H column (90:10 hexane:propanol),
25 °C, 254 nm, 1.0 mL/min; major enantiomer tr=5.5 min,
minor enantiomer tr=7.7 min.
9. Wu L-L, Xiang Y, Yang D-C, Guan Z, He Y-H (2016) Biocata-
lytic asymmetric Mannich reaction of ketimines using wheat
germ lipase. Catal Sci Technol 6(11):3963–3970
10. Eremeev NL, Zaitsev SY (2016) Porcine pancreatic lipase as a
catalyst in organic synthesis. Mini-Rev Org Chem 13(1):78–85
11. Xu F, Xu J, Hu YJ, Lin XF, Wu Q (2016) One-pot bienzymatic
cascade combining decarboxylative aldol reaction and kinetic
resolution to synthesize chiral β-hydroxy ketone derivatives.
RSC Adv 6(80):76829–76837
12. Li W, Liu DN, Geng X, Li ZQ, Gao RJ (2019) Real-time regula-
tion of catalysis by remotecontrolled enzyme-conjugated gold
nanorod composites for aldol reaction-based applications. Catal
Sci Technol 9:2221–2230
4.10 (E)‑2‑(1‑hydroxy‑3‑phenylallyl)
cyclopentanone
1H NMR (400 MHz, CDCl3): δ 7.43–7.29 (m, 5H), 6.64 (d,
J = 15.5 Hz, 1H), 6.31–6.17 (m, 1H), 4.36–4.32 (m, 1H),
3.69–3.65 (m, 1H), 3.54 (m, J=7.0 Hz, 1H), 2.51–2.22 (m,
3H), 2.21–1.79 (m, 3H). Enantiomeric excess was deter-
mined by HPLC with a CHIRALPAK AD-H column (90:10
hexane:2-propanol), 25 °C, 254 nm, 1.0 mL/min; major
enantiomer tr=12.0 min, minor enantiomer tr=9.9 min.
13. Tian X-M, Zhang S-Q, Zheng L-Y (2016) Enzyme-catalyzed
henry reaction in choline chloride-based deep eutectic solvents.
J Microbiol Biotechnol 26(1):80–88
14. Foley M, Gavin DP, Deasy RE, Milner SE, Moody TS, Eccles
KS, Lawrence SE, Maguire AR (2018) Dynamic kinetic resolu-
tion of 2-methyl-2-nitrocyclohexanol: combining the intramo-
lecular nitroaldol (Henry) reaction & lipase catalysed resolu-
tion. Tetrahedron 74(13):1435–1443
1 3