10.1002/cctc.201902128
ChemCatChem
COMMUNICATION
increasing decarboxylase loading, as high as 88% with 40 mg
mL–1 cells, but with the relative ratio of 1a to 2a remaining
constant. This proves that, as the thermodynamic equilibrium of
the amination reaction remains unaltered by the removal of
substrate, the method can serve to increase the overall
productivity of the system and approach higher conversions to
amine.
of substrates, such as to allow formal biocatalytic NH3/CO2
exchange with a variety of acrylic acids.
Acknowledgements
SLF acknowledges RCUK (BB/L013762/1; BB/M027791/1;
BB/M02903411; BB/M028836/1) and ERC (788231-ProgrES-
ERC-2017-ADG). This work was funded by the European
Union’s 7th Framework program FP7/2007-2013 under grant
agreement nos. 289646 (KYROBIO) and 115360 (CHEM21)
with the latter including EFPIA companies’ in-kind contribution
for the Innovative Medicine Initiative.
Table 2. Effect of varying ammonia concentration, buffer pH and EfPheDC
whole cell catalyst loading on the product distribution in the AvPAL-EfPheDC
cascade.[a]
______________________________________________________________
Ammonium
carbamate
[mM]
EfPheDC
E. coli wet cells
[mg mL-1]
1a
2a
3a
pH
[%][b]
[%][b]
[%][b]
Keywords: arylethylamines • biocatalysis • enzyme cascades •
1000
500
250
500
500
500
500
500
500
500
7.7
7.7
7.7
8.8
7.7
6.6
6.6
6.6
6.6
6.6
20
20
20
20
20
20
0
56
53
16
72
53
19
28
20
19
12
29
13
56
23
13
43
72
47
43
27
15
34
28
5
ammonia lyases • decarboxylases
References
34
39
0
[1]
[2]
N. Ohtsuka, M. Okuno, Y. Hoshino, K. Honda, Org. Biomol. Chem.
2016, 9046–9054.
U. T. Bornscheuer, G. W. Huisman, R. J. Kazlauskas, S. Lutz, J. C.
Moore, K. Robins, Nature 2012, 485, 185–194.
M. T. Reetz, J. Am. Chem. Soc. 2013, 135, 12480–12496.
H. S. Toogood, N. S. Scrutton, Catal. Sci. Technol. 2013, 3, 2182-
2194.
10
20
40
33
39
61
[3]
[4]
[a] Reaction conditions: 2 mM 1a, 10 mg mL-1 AvPAL E. coli dry cells,
30°C, 250 rpm, 22 h. [b] Determined by reverse phase HPLC analysis on
a non-chiral phase.
[5]
a) J. Steinreiber, M. Schuermann, M. Wolberg, F. Van Assema, C.
Reisinger, K. Fesko, D. Mink, H. Griengl, Angew. Chem. Int. Ed.
2007, 46, 1624–1626. b) D. Baud, O. Peruch, P.-L. Saaidi, A.
Fossey, A. Mariage, J.-L. Petit, M. Salanoubat, C. Vergne-Vaxelaire,
V. de Berardinis, A. Zaparucha, Adv. Synth. Catal. 2017, 359,
1563–1569.
This work has demonstrated the biocatalysed conversion of
easily accessible arylacrylic acids to β-arylethylamines using a
combination of PAL and AADC enzymes. The integration of the
well-characterised PAL biocatalyst with an AADC not widely
used for biotransformations prompted a substrate screen of the
latter enzyme, showing it to have a strict enantiopreference for L-
amino acids, broad substrate scope (particularly meta-
substituted) and possibly mild inhibition of activity in the
presence of D-enantiomers. The two biocatalytic steps could be
easily run sequentially in the same vessel, without
chromatographic purifications or complex separation steps in
between. This was achieved through simple removal of whole
cells and sublimation of the volatile reaction buffer following the
first step, allowing up to 98% conversion overall at ~30 mM
substrate concentration. The different pH optima and ammonia
tolerance exhibited by each enzyme warranted optimisation of a
cascade approach for the one-pot conversion of cinnamic acid to
its corresponding amine. By focussing on the requirements of
the second, irreversible decarboxylation step (i.e., low pH, low
ammonia concentration and increased cell loading) it was found
that conversion up to 61% to β-phenylethylamine could be
achieved, with the AADC acting to remove the initial amination
product thus enabling further consumption of starting material to
redress the equilibrium of the PAL reaction. This strategy,
combining an amino acid forming enzyme with an orthogonal
decarboxylase, could potentially be applied to different classes
[6]
[7]
[8]
[9]
Y. Zhou, S. Wu, Z. Li, Angew. Chem. Int. Ed. 2016, 55, 11647–
11650.
E. Busto, R. C. Simon, W. Kroutil, Angew. Chem. Int. Ed. 2015, 54,
10899–10902.
F. Parmeggiani, N. J. Weise, S. T. Ahmed, N. J. Turner, Chem. Rev.
2018, 118, 73–118.
a) S. L. Lovelock, R. C. Lloyd, N. J. Turner, Angew. Chem. Int. Ed.
2014, 53, 4652–4656. b) F. Parmeggiani, S. L. Lovelock, N. J.
Weise, S. T. Ahmed, N. J. Turner, Angew. Chem. Int. Ed. 2015, 54,
4608–4611.
[10]
[11]
B. de Lange, D. J. Hyett, P. J. D. Maas, D. Mink, F. B. J. van
Assema, N. Sereinig, A. H. M. de Vries, J. G. de Vries,
ChemCatChem 2011, 3, 289–292.
a) A. Marcobal, B. De Las Rivas, R. Muñoz, FEMS Microbiol. Lett.
2006, 258, 144–149. b) H. C. Hailes, Y. Wang, N. Tappertzhofen, D.
Méndez-Sánchez, M. Bawn, B. Lyu, J. Ward, Angew. Chem. Int. Ed.
2019, 15, 10120-10125
[12]
S. D. Christenson, W. Liu, M. D. Toney, B. Shen, J. Am. Chem. Soc.
2003, 125, 6062–6063.
[13]
[14]
C. L. Nesloney, J. W. Kelly, J. Org. Chem. 1996, 61, 3127–3137.
C. Karlsson, M. Blom, M. Johansson (neé Varedian), A. M. Jansson,
E. Scifo, A. Karlén, T. Govender, A. Gogoll, Org. Biomol. Chem.
This article is protected by copyright. All rights reserved.