Inorg. Chem. 2009, 48, 7507–7509 7507
DOI: 10.1021/ic900850u
Hydrogen Activation by Biomimetic Diiron Dithiolates
Matthew T. Olsen, Bryan E. Barton, and Thomas B. Rauchfuss*
Department of Chemistry, University of Illinois, Urbana, Illinois 61801
Received May 1, 2009
Using the thermally stable salts of [Fe2(SR)2(CO)3(PMe3)(dppv)]-
Recently, we reported [Fe2(pdt)(CO)3(PMe3)(dppv)]BF4
([1]BF4, pdt = S2C3H6), a paramagnetic (S = 1/2) spin-
localized species that represents a useful structural model
for the Hox state of the binuclear active site [dppv = cis-1,
2-bis(diphenylphosphino)ethylene].7,8 With a vacant coordi-
nation site, Hox and its models are poised to activate H2.
Although [1]þ binds CO, it exhibits no discernible affinity
toward H2. The anticipated product of hydrogen activation,
[Fe2(μ-H)(pdt)(CO)3(PMe3)(dppv)]BF4 ([1H]BF4), was pre-
pared independently by protonation of the corresponding
FeIFeI precursor; a terminal hydride is initially formed that
rapidly isomerizes to bridging hydrides.9
BArF , we found that the azadithiolates [Fe2(adtR)(CO)3(PMe3)-
4
(dppv)]þ react with high pressures of H2 to give the hydride
[Fe2(μ-H)(adtR)(CO)3(dppv)(PMe3)]BArF . The related oxadithio-
4
late and propanedithiolate complexes are unreactive toward H2.
Molecular hydrogen is proposed to undergo heterolysis assisted by
the amine followed by isomerization of an initially formed terminal
hydride. Use of H2 and D2O gave the deuteride as well as the
hydride, implicating protic intermediates.
Hydrogenases are enzymes that catalyze the interconversion
of H2 with protons and reducing equivalents.1 Understanding
the reactivity of these enzymes via active-site models remains
topical,2 especially because these catalysts rely on inexpensive
first-row transition metals.3 Significant progress has been made
in [FeFe]-hydrogenase models,4,5 but nearly all studies to date
have focused on proton reduction.6 The opposite reaction,
hydrogen oxidation, has proven elusive. This lack of reactivity
is surprising because [FeFe]-hydrogenases are exceptionally
active toward H2 oxidation. The eventual translation of models
to applications in fuel cells requires progress in hydrogen
oxidation. Herein we report the first example of the activation
of H2 by a model for [FeFe]-hydrogenase, as well as the
associated advances that have facilitated this progress.
The thermal sensitivity of [1]BF4 severely limits studies of its
reactivity toward H2: it is unstable above 0 °C for more than
a few seconds. We have found that the corresponding
salt [1]BArF4 is stable in solution for days at room temperature
(BArF -=B(C6H3-3,5-(CF3)2)4-). The sensitivity of electrophilic
4
iron carbonyls toward fluorinated counterions is precedented.10
We confirmed that solutions of [1]BArF rapidly decomposed
4
upon treatment with [Bu4N]BF4. The robust salt [1]BArF ,
4
however, proved unreactive toward 1800 psi H2, even upon
addition of the bulky base 2,6-(tBu)2pyridine. Many bases such as
2,6-dimethylpyridine are not compatible with [1]BArF , causingit
4
to decompose to unidentified products. Apparently, H2 activa-
tion by Hox models is subject to a significant kinetic barrier.
The proposed azadithiolato cofactor has been shown to
significantly affect the acid-base properties of diiron dithio-
late complexes.11 Furthermore, pendant amine bases drama-
tically affect the rate of H2 uptake in Ni-based catalysts.12 We
*To whom correspondence should be addressed. E-mail: rauchfuz@uiuc.edu.
(1) Vincent, K. A.; Parkin, A.; Armstrong, F. A. Chem. Rev. 2007, 107,
4366–4413. Fontecilla-Camps, J. C.; Volbeda, A.; Cavazza, C.; Nicolet, Y. Chem.
Rev. 2007, 107, 4273–4303. Posewitz, M. C.; Mulder, D. W.; Peters, J. W. Curr.
Chem. Biol. 2008, 2, 178–199.
(2) Lewis, N. S.; Nocera, D. G. Proc. Natl. Acad. Sci. U.S.A. 2006, 103,
15729–15735. Hu, X. L.; Brunschwig, B. S.; Peters, J. C. J. Am. Chem. Soc.
2007, 129, 8988–8998. Kluwer, A. M.; Kapre, R.; Hartl, F.; Lutz, M.; Spek, A. L.;
Brouwer, A. M.; van Leeuwen, P. W. N. M.; Reek, J. N. H. Proc. Natl. Acad. Sci.
U.S.A. 2009, 0000(DOI: 0010.1073/pnas.0809666106).
therefore investigated azadithiolato analogues of [1]BArF .
4
As described below, we present evidence that such mixed-
valence azadithiolatodiiron complexes indeed activate H2.
Azadithiolate-containing analogues of [1]þ have
proven to be particularly sensitive: attempts to generate
(3) Enthaler, S.; Junge, K.; Beller, M. Angew. Chem., Int. Ed. 2008, 47,
3317–3321.
(7) Justice, A. K.; De Gioia, L.; Nilges, M. J.; Rauchfuss, T. B.; Wilson,
S. R.; Zampella, G. Inorg. Chem. 2008, 47, 7405–7414.
(8) Justice, A. K.; Nilges, M.; Rauchfuss, T. B.; Wilson, S. R.; De Gioia,
L.; Zampella, G. J. Am. Chem. Soc. 2008, 130, 5293–5301. Justice, A. K.;
Rauchfuss, T. B.; Wilson, S. R. Angew. Chem., Int. Ed. 2007, 46, 6152–6154.
(9) Barton, B. E.; Zampella, G.; Justice, A. K.; De Gioia, L.; Rauchfuss,
T. B.; Wilson, S. R. Submitted for publication, 2009.
(10) Landau, S. E.; Morris, R. H.; Lough, A. J. Inorg. Chem. 1999, 38,
6060–6068.
(11) Barton, B. E.; Olsen, M. T.; Rauchfuss, T. B. J. Am. Chem. Soc. 2008,
130, 16834–16835.
(12) Rakowski DuBois, M.; DuBois, D. L. Chem. Soc. Rev. 2009, 38,
62–72.
(4) Artero, V.; Fontecave, M. Coord. Chem. Rev. 2005, 249, 1518–1535.
Tard, C.; Liu, X.; Ibrahim, S. K.; Bruschi, M.; De Gioia, L.; Davies, S. C.; Yang,
X.; Wang, L.-S.; Sawers, G.; Pickett, C. J. Nature 2005, 433, 610–614.
(5) Gloaguen, F.; Rauchfuss, T. B. Chem. Soc. Rev. 2009, 38, 100–108.
(6) Georgakaki, I. P.; Darensbourg, M. Y. In Comprehensive Coordina-
tion Chemistry II; McCleverty, J. A., Meyer, T. J., Eds.; Elsevier: Amsterdam,
The Netherlands, 2004; pp 549-568. Zhao, X.; Chiang, C.-Y.; Miller, M. L.;
Rampersad, M. V.; Darensbourg, M. Y. J. Am. Chem. Soc. 2003, 125, 518–524.
Nehring, J. L.; Heinekey, D. M. Inorg. Chem. 2003, 42, 4288–4292. Heiden,
Z. M.; Zampella, G.; De Gioia, L.; Rauchfuss, T. B. Angew. Chem., Int. Ed. 2008,
47, 9756–9759.
r
2009 American Chemical Society
Published on Web 07/15/2009
pubs.acs.org/IC