692
H. T. Ngo et al.
1.00 × 10−4 mol dm−3 in hydrochloric acid and 0.10 mol dm−3
in NaCl. The concentrations of PB+ and PY+ solutions
for dimerization studies ranged from 1.0 × 10−3 mol dm−3 to
2.0 × 10−2 mol dm−3. For complexation studies the concen-
trations of PB+ and PY+ were 2.0 × 10−3 mol dm−3, while
those of the βCD and dimer hosts were varied over the range
algorithms to these data to derive complexation constants and
speciation plots; (ii) 1H NMR chemical shift variations of PB+
and PY+ and fitting of algorithms to these data to derive dimer-
ization and complexation constants; (iii) 2D ROESY 1H NMR
spectra and a Table of 1H NMR chemical shifts. This material is
available on the Journal’s website.
1
0–5.0 × 10−3 mol dm−3. For the 2D H NMR ROESY experi-
ments, each sample was 2.0 × 10−3 mol dm−3 in either PB+ or
PY+ and in either βCD or a linked βCD dimer.
Acknowledgement
Support of this study by the Australian Research Council and the University
of Adelaide, and the award of an Endeavour Postgraduate Award to H.T.N.
are gratefully acknowledged.
Instrumental
UV-vis spectra were run on a Varian Cary 5000 spectrophoto-
meter, using matched quartz cells with a 1 cm path length, in
a cell block with a constant temperature of 298.2 K. Solutions
were equilibrated at this temperature before scanning. The scan
rate was 600 nm min−1 and the data interval was 0.5 nm. Fluo-
rescence spectra were run on a Varian Cary Eclipse fluorimeter.
The solutions were equilibrated in a 1 cm path length quartz
cell in a thermostatted 298.2 K cell block. The excitation and
References
[1] J. Szejtli, Chem. Rev. 1998, 98, 1743. doi:10.1021/CR970022C
[2] C. J. Easton, S. F. Lincoln, Modified Cyclodextrins: Scaffolds andTem-
plates for Supramolecular Chemistry 1999 (Imperial College Press:
London).
[3] A. Harada, Acc. Chem. Res. 2001, 34, 456. doi:10.1021/AR000174L
[4] Y. Liu, Y. Chen, Acc. Chem. Res. 2006, 39, 681. doi:10.1021/
AR0502275
[5] J. Szejtli, Chem. Rev. 1998, 98, 1743. doi:10.1021/CR970022C
[6] A. R. Hedges, Chem. Rev. 1998, 98, 2035. doi:10.1021/CR970014W
[7] E. M. M. Del Valle, Process Biochem. 2004, 39, 1033. doi:10.1016/
S0032-9592(03)00258-9
[8] T. Loftsson, D. Duchêne, Int. J. Pharmaceutics 2007, 329, 1.
doi:10.1016/J.IJPHARM.2006.10.044
emission slit widths were 5 nm, the scan rate was 120 nm min−1
,
and the data interval was 0.5 nm. 2D 1H ROESY NMR spectra
were recorded on a Varian Inova 600 spectrometer operating at
599.957 MHz, using a standard pulse sequence with a mixing
time of 300 ms.
Data Analysis
[9] J. H. Coates, C. J. Easton, S. J. van Eyk, S. F. Lincoln, B. L. May, C. B.
Whalland, M. L. Williams, J. Chem. Soc., Perkin Trans. 1 1990, 2619.
doi:10.1039/P19900002619
[10] K. Fujiki, C. Iwanaga, M. Koizumi, Bull. Chem. Soc. Jpn. 1962, 35,
185. doi:10.1246/BCSJ.35.185
[11] R. L. Schiller, S. F. Lincoln, J. H. Coates, J. Chem. Soc., FaradayTrans.
I 1986, 82, 2123 (in the text “annular radii” should read “annular
diameters”). doi:10.1039/F19868202123
[12] R. L. Schiller, S. F. Lincoln, J. H. Coates, J. Chem. Soc., Faraday
Trans. I 1987, 83, 3237. doi:10.1039/F19878303237
[13] R. L. Schiller, S. F. Lincoln, J. H. Coates, J. Incl. Phenom. 1987, 5,
59. doi:10.1007/BF00656403
[14] Y. Onganer, E. L. Quitevis, J. Phys. Chem. 1992, 96, 7996.
doi:10.1021/J100199A033
[15] B. Acemioglu, M. Arik, Y. Onganer, J. Lumin. 2002, 97, 153.
doi:10.1016/S0022-2313(02)00218-1
[16] B. Reija, W.Al-Soufi, M. Novo, J. V. Tato, J. Phys. Chem. B 2005, 109,
1364. doi:10.1021/JP046587B
[17] D.-T. Pham, P. Clements, C. J. Easton, J. Papageorgiou, B. L. May,
S. F. Lincoln, New J. Chem. 2008, 32, 712. doi:10.1039/B715985D
[18] D.-T. Pham, P. Clements, C. J. Easton, J. Papageorgiou, B. L.
May, S. F. Lincoln, Supramol. Chem. 2009, 21, 510. doi:10.1080/
10610270802406579
[19] E. M. Chamberlin, B. F. Powell, D. E. Williams, J. Conn, J. Org. Chem.
1962, 27, 2263. doi:10.1021/JO01053A538
[20] C. J. Easton, S. J. van Eyk, S. F. Lincoln, B. L. May, J. Papageorgiou,
M. J. Williams, Aust. J. Chem. 1997, 50, 9. doi:10.1071/C96168
[21] L. P. Glanneschi, T. Kurucsev, J. Chem. Soc., Faraday Trans. II 1974,
70, 1334. doi:10.1039/F29747001334
[22] R. A. Binstead, B. Jung, A. D. Zuberbuhler, SPECFIT/32, v3.0.39(b)
2007 (Spectrum Software Associates: Marlborough, MA, USA).
[23] C. Frassineti, S. Ghelli, P. Gans, A. Sabatini, S. Moruzzi, A. Vacca,
Anal. Biochem. 1995, 231, 374. doi:10.1006/ABIO.1995.9984
[24] P. Gans, A. Sabatini, A. Vacca, HypNMR, v3.1.5 2004 (Protonic
Software).
The K1 for the 1:1 host-guest complexes of either PB+ or PY+
with the βCD and linked βCD dimer hosts were derived by simul-
taneously fitting the absorbance variation typified by Fig. 1 over
a wide wavelength range at 0.5 nm intervals to Eqn 3:
A = εPB[PB+] + ε33βCD2suc[33βCD2suc]
+ ε33βCD2suc.PB[33βCD2suc.PB+],
(3)
where A is the absorbance and εPB, ε33βCD2suc, ε33βCD2suc.PB
are the molar absorbances of the PB+, 33βCD2suc, and
33βCD2suc.PB+, respectively. Analogous equations apply for
the absorbance variation of the other five systems and for the flu-
orescence variations all six systems. The SPECFIT/32 protocol
was used in the fitting procedure.[22] The dimerization constants,
Kd, for PB+ and PY+ were derived by simultaneously fitting the
variation of the 1H chemical shifts, δexp, of H1–H4 as [PB+]total
and [PY+]total increased to Eqn 4, where the third right hand
term is absent, to the experimental data using the HypNMR 2003
program as typified by Fig. 4.[23,24] The K1 for all six systems
were similarly derived by fitting 1H chemical shift variations for
H1–H4 to Eqn 4 for the 66βCD2suc.PB+ system (Fig. 6) and
analogous equations for the other five systems.
δexp = δPB[PB+] + δPB2[(PB+)2]
+ δβCD2suc.PB[66βCD2suc.PB+]
(4)
Accessory Publication
Electronic supplementary material is available showing: (i) UV-
vis and fluorescence changes of PB+ and PY+ and fitting of