Journal of the American Chemical Society
Article
for 30 min, transferred by syringe to a precooled 5-mm low-
pressure/vacuum valve NMR tube, and promptly inserted into
the NMR instrument probe precooled to −78 °C for 1H NMR,
13C NMR, and 2D-gradient HSQC data acquisition. The
temperature was maintained for 2 h, then warmed by 10 °C
Table 4. Reaction Scope with 2,6-Dideoxy-Sugars
1
every 10 min. At each 10-min interval, the H NMR spectrum
was recorded.
ASSOCIATED CONTENT
* Supporting Information
Experimental procedures and characterization of all new
compounds. Full VT NMR spectra. This material is available
■
S
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Financial support for this work was provided by the National
Science Foundation (NSF 1300334). J.P.I. is supported by a
GAANN graduate fellowship from the U.S. Department of
Education.We thank Dr. David Wilbur (Tufts University) for
assistance with low-temperature NMR experiments.
REFERENCES
■
(1) Langenhan, J. M.; Griffith, B. R.; Thorson, J. S. J. Nat. Prod. 2005,
68, 1696−1711.
(2) Kong, F.; Zhao, N.; Siegal, M. M.; Janota, K.; Ashcroft, J. S.;
Koehn, F. E.; Borders, D. B.; Carter, G. T. J. Am. Chem. Soc. 1998, 120,
13301−13311.
EXPERIMENTAL SECTION
■
General Experimental Procedure. A solution of donor
(0.375 mmol, 1.5 equiv) and 2,4,6-tri-tert-butylpyrimidine
(TTBP, 93.2 mg, 0.375 mmol, 1.5 equiv) in 3.0 mL THF
was cooled to −78 °C and treated dropwise with potassium
hexamethyldisilazane (1 M in THF, 0.375 mL, 0.375 mmol, 1.5
equiv). After 15 min, a solution of p-toluenesulfonic anhydride
(122.4 mg, 0.375 mmol, 1.5 equiv) in 2.0 mL THF was added
rapidly to the reaction. The solution was maintained at −78 °C
for 30 min. Meanwhile the acceptor (0.250 mmol, 1.0 equiv)
was dissolved in 2.0 mL THF, cooled to −78 °C, and treated
with potassium hexamethyldisilazane (0.250 mL, 0.250 mmol,
1.0 equiv). After 15 min, this solution was transferred dropwise
by syringe to the primary reaction vessel. The reaction mixture
was then allowed to gradually warm to room temperature over
the course of 3 h, and stirred for an additional 15 h. The
reaction was quenched with several drops of saturated, aqueous
ammonium chloride (NH4Cl), diluted with water, and
extracted with diethyl ether (2 × 15 mL). The pooled organic
phase was washed with brine (2 × 15 mL) and then dried
(Na2SO4), filtered, and concentrated under reduced pressure.
The crude product was purified by silica gel flash column
chromatography to afford the product as a single β-anomer.
Procedure for Low-Temperature NMR Experiment. A
solution of donor 1 (21.7 mg, 0.050 mmol, 1.0 equiv) and
2,4,6-tri-tert-butylpyrimidine (TTBP, 13.0 mg, 0.050 mmol, 1.0
equiv) in 0.50 mL THF-d8 was cooled to −78 °C in a dry ice/
acetone bath and treated dropwise with potassium hexame-
thyldisilazane (1 M in THF, 50.0 μL, 0.050 mmol, 1.0 equiv).
After 15 min, a solution of p-toluenesulfonic anhydride (17.1
mg, 0.053 mmol, 1.05 equiv) in 0.50 mL THF-d8 was added
rapidly to the reaction. The reaction was maintained at −78 °C
(3) Langenhan, J. M.; Peters, N. R.; Guzei, I. A.; Hoffman, F. M.;
Thorson, J. S. Proc. Natl. Acad. U.S.A. 2005, 32, 12305−12310.
(4) Iyer, A. K. V.; Zhou, M.; Azad, N.; Elbaz, H.; Wang, L.; Rogalsky,
D. K.; Rojanasakul, Y.; O’Doherty, G. A.; Lagenhan, J. M. ACS Med.
Chem. Lett. 2010, 1, 326−330.
(5) Crich, D. J. Org. Chem. 2011, 76, 9193−9209.
(6) Hou, D.; Lowary, T. L. Carbohydr. Res. 2009, 344, 1911−1940.
(7) Borovika, A.; Nagorny, P. J. Carbohydr. Chem. 2012, 31, 255−
283.
(8) Lam, S. N.; Gervay-Hague, J. Org. Lett. 2003, 5, 4219−4222.
(9) Baryal, K. N.; Zhu, D.; Li, X.; Zhu, J. Angew. Chem., Int. Ed. 2013,
52, 8012−8016.
(10) Issa, J. P.; Lloyd, D.; Steliotes, E.; Bennett, C. S. Org. Lett. 2013,
15, 4170−4173.
(11) For indirect approaches to β-linked 2-deoxy-sugars see:
(a) Thiem, J.; Gerken, M. J. Org. Chem. 1985, 50, 954−958.
(b) Nicolaou, K. C.; Ladduwahetty, T.; Randall, J. L.; Chucholowski,
A. J. Am. Chem. Soc. 1986, 108, 2466−2467. (c) Ito, Y.; Ogawa, T.
Tetrahedron Lett. 1987, 28, 2723−2726. (d) Preuss, R.; Schmidt, R. R.
Synthesis 1988, 694−697. (e) Kahne, D.; Yang, D.; Lim, J. J.; Miller, R.;
Paguaga, E. J. Am. Chem. Soc. 1988, 110, 8716−8717. (f) Crich, D.;
Ritchie, T. J. J. Chem. Soc., Chem. Commun. 1988, 1461−1463.
(g) Perez, M.; Beau, J.-M. Tetrahedron Lett. 1989, 30, 75−78.
̀
(h) Trumtel, M.; Tavecchia, P.; Veyrieres, A.; Sinay, P. Carbohydr. Res.
̈
1989, 191, 29−52. (i) Gervay, J.; Danishefsky, S. J. Org. Chem. 1991,
56, 5448−5451. (j) Grewal, G.; Kaila, N.; Franck, R. W. J. Org. Chem.
1992, 57, 2084−2092. (k) Hashimoto, S.-i.; Yanagiya, Y.; Honda, T.;
Ikegami, S. Chem. Lett. 1992, 21, 1511−1514. (l) Toshima, K.; Nozaki,
Y.; Mukaiyama, S.; Tatsuta, K. Tetrahedron Lett. 1992, 33, 1491−1494.
(m) Toshima, K.; Mukaiyama, S.; Nozaki, Y.; Inokuchi, H.; Nakata,
M.; Tatsuta, K. J. Am. Chem. Soc. 1994, 116, 9042−9051. (n) Roush,
W. R.; Sebesta, D. P.; Bennett, C. E. Tetrahedron 1997, 53, 8825−
8836. (o) Roush, W. R.; Sebesta, D. P.; James, R. A. Tetrahedron 1997,
5743
dx.doi.org/10.1021/ja500410c | J. Am. Chem. Soc. 2014, 136, 5740−5744