10.1002/anie.201708497
Angewandte Chemie International Edition
COMMUNICATION
[5]
(a) J.-R. Chen, X.-Q. Hu, L. Q. Lu, W.-J. Xiao, Chem. Soc. Rev. 2016,
2044-2056; (b) S. Maity, N. Zheng, Angew. Chem. Int. Ed. 2012, 51,
9562; (c) G. Cecere, C. M. Konig, J. L. Alleva, D. W. C. MacMillan, J.
Am. Chem. Soc. 2013, 135, 11521; (d) L. J. Allen, P. J. Cabrera, M.
Lee, M. S. Sanford, J. Am. Chem. Soc. 2014, 136, 5607; (e) X.-Q. Hu,
J.-R. Chen, Q. Wei, F.-L. Liu, Q.-H. Deng, A. M. Beauchemin, W.-J.
Xiao, Angew. Chem. Int. Ed. 2014, 53, 12163; (f) H. Jiang, X. An, K.
Tong, T. Zheng, Y. Zhang, S. Yu, Angew. Chem. Int. Ed. 2015, 54,
4055; (g) X.-Q. Hu, X. Qi, J.-R. Chen, Q.-Q. Zhao, Q. Wei, W.-J. Xiao,
Nat. Com. 2016, 7, 11188; (h) G. J. Choi, Q. Zhu, D. C. Miller, C. J. Gu,
R. R. Knowles, Nature 2016, 539, 268-271; (i) J. C. K. Chu, T. Rovis,
Nature 2016, 539, 272-275; (j) X. Shen, K. Harms, M. Marsch, E.
Meggers, Chem. Eur. J. 2016, 22, 9102; (k) E. A. Wappes, S. C. Fosu,
T. C. Chopko, D. A. Nagib, Angew. Chem. Int. Ed. 2016, 128, 10128; (l)
X.-Q. Hu, J. Chen, J.-R. Chen, D.-M. Yan, W.-J. Xiao, Chem. Eur. J.
2016, 22, 14141; (m) W. Shu, C. Nevado, Angew. Chem. Int. Ed. 2017,
56, 1881; (n) A. J. Musacchio, B. C. Lainhart, X. Zhang, S. G. Naguib, T.
C. Sherwood, R. R. Knowles, Science 2017, 355, 727; (o) Z. Zhou, Y.
Li, B. Han, L. Gong, E. Meggers, Chem. Sci. 2017, 8, 5757; (p) P.
Becker, T. Duhamel, C. J. Stein, M. Reiher, K. Muniz, Angew. Chem.
Int. Ed. 2017, 56, 8004; (q) W. Shu, A. Genoux, Z. Li, C. Nevado,
Angew. Chem. Int. Ed. 2017, 56, 10521.
As shown in Scheme 5, we were able to implement substrates
containing terminal olefins (3b), which lead, via the intermediacy
of a primary radical, to imines 6a–h. Pyridine substituents were
tolerated thus providing nicotine analogues 6i–k. Substrates
containing di-substituted olefins (3d,e) were also successfully
engaged proving that the strategy is amenable to the formation
and functionalization of secondary benzylic (7a–e) and α-ester
(7f–j) radicals. By embedding the olefin into a cycle (3f), we
generated poly-functionalized bicyclic molecules in good yield
and good to moderate diastereoselectivity favouring the all-syn
isomer (7j–q). We also expanded the scope of coupling partners
in terms of Michael acceptors (8a,b) and IBX-reagents for imino-
olefination (8c) and -alkynylation (8d,e). Substrates prepared
from α-ketoacids could also be employed leading to the
formation of proline-like products (8f–i). Lastly, this radical
platform was evaluated as an enabling tool for the late-stage
imino-functionalization of biologically active molecules.
Therefore, we tested the structurally complex and densely
functionalized morphane derivative thevinone (9),[25] which was
successfully engaged in the formation of products derived from
imino-azidation (10a), imino-amination (10b) and imino-
selenation (10c) of the olefin moiety.
[6]
[7]
J. Davies, S. G. Booth, S. Essafi, R. W. A. Dryfe, D. Leonori, Angew.
Chem. Int. Ed. 2015, 54, 14017.
(a) J. Davies, T. D. Svejstrup, D. F. Reina, N. S. Sheikh, D. Leonori, J.
Am. Chem. Soc. 2016, 138, 8092; (b) D. F. Reina, E. M. Duncey, S. P.
Morcillo, T. D. Svejstrup, M. V. Popescu, J. J. Douglas, N. S. Sheikh, D.
Leonori, Eur. J. Org. Chem. 2017, 2108.
(a) J. Boivin, A.-M. Schiano, S. Z. Zard, H. Zhang, Tetrahedron Lett.
1999, 40, 4531; (b) X. Li, D. Stien, S. M. Weinreb, Org. Lett. 1999, 1,
637; (c) H. Su, W. Li, Z. Xuan, W. Yu, Adv. Synth. Catal. 2014, 357, 64;
(d) A. Faulkner, J. S. Scott, J. F. Bower, J. Am. Chem. Soc. 2015, 137,
7224; (e) Q. Quin, D. Ren, S. Yu, Org. Biomol. Chem. 2015, 13, 10295;
(f) K. Miyazawa, T. Koike, M. Akita, Chem. Eur. J. 2015, 21, 11677; (g)
J.-Q. Chen, W.-L. Yu, Y.-L. Wei, T.-H. Li, P. F. Xu, J. Org. Chem. 2017,
82, 243.
[8]
In conclusion, we have developed a general method for the
fast and divergent assembly of poly-functionalized nitrogen
heterocycles. The reaction involves the organo-photoredox
generation of iminyl radicals by oxidative SET of a traceless
[9]
Studer has recently reported a photoredox imino-Michael reaction, H.
Jiang, A. Studer, Angew. Chem. Int. Ed. 2017, DOI:
10.1002/ange.201706270..
electrophore and
a subsequent cyclization–functionalization
cascade with a broad range of SOMOphiles. This strategy
generates useful building blocks in a single step, and its
application to a number of more complex examples highlights its
broad applicability.
[10] (a) M.-H. L. Tadic-Biadatti, A.-C. Callier-Dublanchet, J. H. Horner, B.
Quinclet-Sire, S. Z. Zard, M. Newcomb, J. Org. Chem. 1997, 62, 559;
(b) J. C. Walton, Org. Biomol. Chem. 2014, 12, 7983.
[11] (a) B. Giese, J. He, W. Mehl, Chem. Ber. 1988, 121, 2063; (b) M.
Kisschewitz, K. Okamoto, C. Much-Lichtenfeld, A. Studer, Science
2017, 355, 936.
[12] (a) D. Staveness, I. Bosque, C. R. J. Stephenson, Acc. Chem. Res.
2016, 49, 2295; (b) J. D. Griffin, C. L. Cavanaugh, D. A. Nicewicz,
Angew. Chem. Int. Ed. 2017, 56, 2097; (c) Z. Zuo, D. W. C. MacMillan,
J. Am. Chem. Soc. 2014, 136, 5257; (d) A. Artaryan, A. Mardyukov, K.
Kulbitski, I. Avigdori, G. A. Nisnevich, P. R. Schreiner, M. Gandelman, J.
Org. Chem. 2017, 82, 7093; (e) S. D. Halperin, H. Fan, S. Chang, R. E.
Martin, R. Britton, Angew. Chem. Int. Ed. 2014, 53, 4690; (f) P.
Panchaud, L. Chabaud, Y. Landais, C. Ollivier, P. Renaud, S.
Zigmantas; (g) Y. Amaoka, S. Kamijo, T. Hoshikawa, M. Inoue, J. Org.
Chem. 2012, 77, 9959; (h) S. Mukherjee, B. Maji, A. Tlahuext-Aca, F.
Glorius, J. Am. Chem. Soc. 2017, 138, 16200; (i) F. L. Vaillant, M. D.
Wodrich, J. Waser, Chem. Sci. 2017, 8, 1790; (j) H. Huang, K. Jia, Y.
Chen, Angew. Chem. Int. Ed. 2014, 54, 1881; (k) F. L. Vaillant, T.
Courant, J. Waser, Angew. Chem. Int. Ed. 2015, 54, 11200.
[13] (a) A. R. Forrester, R. J. Napier, R. H. Thomson, J. Chem. Soc., Perkin
Trans. 1 1981, 984; (b) A. R. Forrester, M. Gill, C. J. Meyer, J. S. Sadd,
R. H. Thomson, J. Chem. Soc., Perkin Trans. 1 1979, 606; (c) A. R.
Forrester, M. Gill, J. S. Sadd, R. H. Thomson, J. Chem. Soc., Chem.
Commun. 1975, 291.
Acknowledgements
D. L. thanks the European Union for a Career Integration Grant
(PCIG13-GA-2013-631556) and EPSRC for a research grant
(4500284613). N. S. S. acknowledges the support offered by the
Department of Chemistry, King Faisal University, Saudi Arabia.
Keywords: nitrogen radicals • divergent functionalization •
photoredox • cascade • nitrogen molecules
[1]
[2]
(a) S. A. Lawrence, Amines: Synthesis, Properties and Applications
2008, Cambridge University Press; (b) E. Vitaku, D. T. Smith, J. T.
Njardarson, J. Med. Chem. 2014, 57, 10257-10274; (c) R. D. Taylor, M.
MacCoss, A. D. G. Lawson, J. Med. Chem. 2014, 57, 5845-5859.
(a) S. Z. Zard, Chem. Soc. Rev. 2008, 37, 1603-1618; (b) J. C. Walton,
Molecules 2016, 21, 63; (c) K. Narasaka, M. Kitamura, Eur. J. Org.
Chem. 2005, 4505; (d) L. Stella, Angew. Chem. Int. Ed. 1983, 22, 337;
(e) S. Z. Zard, Synlett 1996, 1148; (f) A. G. Fallis, I. M. Brinza,
Tetrahedron 1997, 53, 17543; (g) M. Kitamura, K. Narasaka, Bull.
Chem. Soc. Jpn. 2008, 81, 539; (h) J. Boivin, E. Fouquet, A.-M.
Schiano, S. Z. Zard, Tetrahedron 1994, 50, 1769; (i) J. Boivin, A.-C.
Callier-Dublanchet, B. Quiclet-Sire, A.-M. Schiano, S. Z. Zard,
Tetrahedron 1995, 51, 6517; (j) J. Cassayre, F. Gagosz, S. S. Zard,
Angew. Chem. Int. Ed. 2002, 41, 1783; (k) M. Kitamura, Y. Mori, K.
Narasaka, Tetrahedron Lett. 2005, 46.
[16] J. Xuan, Z.-G. Zhang, W.-J. Xiao, Angew. Chem. Int. Ed. 2015, 54,
15632.
[17] See SI for more information.
[18] S. Fukuzumi, K. Ohkubo, Org. Biomol. Chem. 2014, 12, 6059.
[19] (a) F. Denes, M. Pichowicz, G. Povie, P. Renaud, Chem. Rev. 2014,
114, 2587; (b) J. D. Griffin, M. A. Zeller, D. A. Nicewicz, J. Am. Chem.
Soc. 2015, 137, 11340.
[20] M. A. Cismenia, T. P. Yoon, Chem. Sci. 2015, 6, 5426.
[21] M. Rueda-Becerril, C. C. Sazepin, J. C. T. Leung, T. Okbinoglu, P.
Kennepohl, J.-F. Paquin, G. M. Sammis, J. Am. Chem. Soc. 2012, 134,
4026.
[22] M. Feng, B. Tang, S. H. Liang, X. Jiang, Curr. Top. Med. Chem. 2016,
16, 1200.
[23] X.-H. Xu, K. Matsuzaki, N. Shibata, Chem. Rev. 2015, 115, 731.
[24] L. Wang, J. Liu, Eur. J. Org. Chem. 2016, 2016, 1813.
[25] E. Stridfeldt, A. Seemann, M. J. Bouma, C. Dey, A. Ertan, B. Olofsson,
Chem. Eur. J. 2016, 22, 16066.
[3]
[4]
(a) C. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev. 2013,
113, 5322-5363; (b) K. L. Skubi, T. R. Blum, T. P. Yoon, Chem. Rev.
2016, 116, 10035; (c) N. A. Romero, D. A. Nicewicz, Chem. Rev. 2016,
116, 10075.
A. Studer, D. P. Curran, Angew. Chem. Int. Ed. 2015, 55, 58-102.
[26] J. W. Lewis, S. M. Husbands, Curr. Pharm. Des. 2004, 10, 717.
This article is protected by copyright. All rights reserved.