X.-Y. Hu et al. / Tetrahedron Letters 52 (2011) 2903–2905
2905
References and notes
1. (a) Anastas, P. T.; Williamson, T. C. Oxford Science Publications, New York,
1998; (b) DeSimone, J. M. Science 2002, 297, 799.
2. For selected examples, see: (a) Wabnitz, T. C.; Spencer, J. B. Org. Lett. 2003, 5,
2141; (b) Leca, D.; Gaggini, F.; Cassayre, J.; Loiseleur, O. J. Org. Chem. 2007, 72,
4284; (c) Ramachandran, P. V.; Pratihar, D. Org. Lett. 2007, 9, 2087; (d) Wu, X.
L.; Wang, G. W. J. Org. Chem. 2007, 72, 9398.
3. (a) Nanteuil de, G.; Duhault, J.; Ravel, D.; Herve, Y. EP 0 528 734A1, 1993; (b)
Coughlan, M. J.; Elmore, S. W.; Kort, M. E.; Kym, P. R.; Moore, J. L.; Pratt, J. K.;
Wang, A. X.; Edwards, J. P.; Jones, T. K. WO 9 941 256, 1999; (c) Johnson, J. V. J.
Med. Chem. 1989, 32, 1942.
4. (a) Pearce, B. C.; Wright, J. J. U.S. Patent 5 411 969, 1995; (b) Jones, T. K.; Winn,
D. T.; Zhi, L.; Hamann, L. G.; Tegley, C. M.; Pooley, C. L. F. U.S. Patent 5 688 808,
1997; (c) Kurata, H.; Kohama, T.; Kono, K.; Kitayama, K.; Hasegawa, T. WO 0
134 570A1, 2001; (d) Jones, T. K.; Goldman, M. E.; Pooley, C. L. F.; Winn, D. T.;
Edwards, J. E.; West, S. J.; Tegley, C. M.; Zhi, L.; Hamann, L. G. WO 9 619 458,
1996; (e) Coughlan, M. J.; Elmore, S. W.; Kort, M. E.; Kym, P. R.; Moore, J. L.;
Pratt, J. K.; Wang, A. X.; Edwards, J. P.; Jones, T. K. WO 9 941 256, 1999.; (f)
Blleau, B.; Martel, R.; Lacasse, G.; Ménard, M.; Weinberg, N. L.; Perron, Y. G. J.
Am. Chem. Soc. 1968, 90, 823; (g) Takahash, H.; Bekkali, Y.; Capolino, A. J.;
Gilmore, T.; Goldrick, S. E.; Kaplita, P. V.; Liu, L.; Nelson, R. M.; Terenzio, D.;
Wang, J.; Zuvela-Jelaska, L.; Proudfoot, J.; Nabozny, G.; Thomson, D. Bioorg. Med.
Chem. Lett. 2007, 17, 5091.
ð2Þ
ð3Þ
On the basis of the above results and previous studies,10
tentative mechanism was proposed and shown in Scheme 2.
Firstly, a-ketoester (1) reacts with amine (2) to generate the imine
a
or enamine intermediate 4, which is followed by addition of the
enolate (quickly formed from the tautomerization of ketoester),
and produces intermediate 5. Subsequently, the electron-rich
benzene ring could add to the keto group to give intermediate 6.
Finally, water elimination and following proton shift would
produce the desired 1,2-dihydroquinolines (3).10
5. (a) Liu, X. Y.; Che, C. M. Angew. Chem., Int. Ed. 2008, 47, 3805; (b) Arisawa, M.;
Theeraladanon, C.; Nishida, A.; Nakagawa, M. Tetrahedron Lett. 2001, 42, 8029;
(c) Parker, K. A.; Mindt, T. L. Org. Lett. 2002, 4, 4265; (d) Yi, C. S.; Yun, S. Y.;
Guzei, I. A. J. Am. Chem. Soc. 2005, 127, 5782; (e) Lu, G. L.; Portscheller, J. L.;
Malinakova, H. C. Organometallics 2005, 24, 945; (f) Kamakshi, R.; Reddy, B. S. R.
Catalysis Commun. 2007, 8, 825.
6. (a) Kamiguchi, S.; Takahshi, I.; Kurokawa, H.; Miura, H.; Chihara, T. Appl. Catal.,
A 2006, 309, 70; (b) Theoclitou, M. E.; Robinson, L. A. Tetrahedron Lett. 2002, 43,
3907.
In summary, we have developed a simple and efficient method
for the synthesis of polysubstituted 1,2-dihydroquinoline deriva-
tives including tricyclic ones via
a one-pot tandem process
employing nitric acid as catalyst. Taking into account the combina-
tion of desirable features, such as operation simplicity, cheap and
readily available catalyst, atom efficiency as well as low toxicity,
this catalytic system is expected to provide an expedient access
to construct versatile dicyclic and tricyclic 1,2-dihydroquinoline
building blocks, which can be used for the synthesis of new drug
candidates and other potential biological active molecules. The
scope, mechanism, and synthetic application of this reaction are
under investigation.
7. (a) Ranu, B. C.; Hajra, A.; Dey, S. S.; Jana, U. Tetrahedron 2003, 59, 813; (b)
Makino, K.; Hara, O.; Takiguchi, Y.; Katano, T.; Asakawa, Y.; Hatano, K.;
Hamada, Y. Tetrahedron Lett. 2003, 44, 8925.
8. (a) Luo, Y. M.; Li, Z. G.; Li, C. J. Org. Lett. 2005, 7, 2675; (b) Liu, X. Y.; Ding, P.;
Huang, J. S.; Che, C. M. Org. Lett. 2007, 9, 2645.
9. Tapia, I.; Alcazar, V.; Grande, M.; Moran, J. R. Tetrahedron 1988, 44, 5113. This
literature reported
a
multi-step reaction for the synthesis of 1,2-
dihydroquinoline from pyruvic acid and aniline, in which self-aldol
condensation of pyruvic acid was considered as the key step. However, in
our reaction system, when methyl pyruvate (1a) was performed separately in
the presence of HNO3, no self-aldol condensation product of methyl pyruvate
was detected, suggesting that
involved in this process.
a different reaction mechanism might be
Acknowledgments
10. Waldmann, H.; Karunakar, G. V.; Kumar, K. Org. Lett. 2008, 10, 2159.
11. (a) Cannon, J. G.; Lazaris, S. A.; Wunderlich, T. A. J. Heterocucli Chem. 1967, 4,
259; (b) Matsumoto, M.; Watanabe, N.; Kobayashi, H. Heterocycles 1987, 26,
1479; (c) Fillion, E.; Dumas, A. M. J. Org. Chem. 2008, 73, 2920.
We are grateful for the financial support from the National
Science Foundation of China (20802072).
Supplementary data
Supplementary data associated with this article can be found, in