3052
Rosane Catarina dos Santos et al. / Tetrahedron Letters 52 (2011) 3048–3053
Figure 7. Candida albicans morphology examined by epifluorescence microscopy after staining (Protocol B, dye concentration 65
filter). The unstained sample (C) and one stained with Calcofluor white (D) prepared with the same methodology used for the dyes 5a and 8b (V-2A filter) are also presented
for comparison (Bar = 10 m)
lM) with dyes 5a (A) and 8b (B) (V-2A
l
of the cell surface could be observed. In (Fig. 7C, an image from the
unstained slide is also shown which presents weak blue intrinsic
fluorescence. Calcofluor white was used for comparison (Protocol
B) under similar experimental conditions, however at a different
dye concentration, and presented worse resolution and excess
brightness. Since the experimental conditions used in the staining
protocols were inadequate for succinimidyl ring opening, the ben-
zazole derivatives were used in their ‘non-active’ forms (closed
ring), which forms non-covalent bonds between the dyes and the
C. albicans cell structures.
All the dye solutions used for staining C. albicans cells presented
photophysical stability when tested after six months of storage at
room temperature. The succinimidyl derivatives 5a–b and 8a–b
presented similar staining properties when compared to their pre-
cursors (Fig. 6A–B).The slides with the stained cells also kept their
fluorescence after four months of storage at room temperature.
This photophysical behaviour can be very useful for teaching meth-
odology in mycology studies. Additional studies are in progress to
use the succinimidyl benzazole derivatives in antifungal activity
assays to observe morphological changes associated with anti-
fungal effects, such as loss of cell viability and cell growth.
In conclusion, four new fluorescent succinimidyl benzazole
derivatives were synthesised and used to stain C. albicans ATCC
10231 cells. The new probes are fluorescent in the yellow-green re-
gion by an intramolecular proton transfer mechanism (ESIPT) with
a large Stokes shift (9065–10962 cmÀ1). The dyes were successfully
used as new dyes by means of a culture method or by direct stain-
ing to study the micromorphology of C. albicans.
References and notes
1. Harris, K.; Crabb, D.; Young, I. M.; Weaver, H.; Gillian, C. A.; Otten, W.; Ritz, K.
Mycol. Res. 2002, 3, 293–297.
2. Sorensen, J.; Nicolaisen, M. H.; Ron, E.; Simonet, P. Plant Soil 2009, 321, 483–
512.
3. Kesavan, C.; Raghunathan, M.; Ganesan, N. Ann. Clin. Microbiol. Antimicrob.
2005, 4, 1–4.
4. Rüchel, R.; Schaffrinski, M. J. Clin. Microbiol. 1999, 37, 2694.
5. Hamer, E. C.; Moore, C. B.; Denning, D. W. Clin. Microbiol. Infec. 2006, 12, 181–
184.
6. Schroeder, J.; Schaffrinski, M.; Ruchel, R. Mycoses 2006, 49, 14–17.
7. Ruchel, R.; Schaffrinski, M.; Seshan, K. R.; Cole, G. T. Med. Mycol. 2000, 38, 231–
237.
8. Wachsmuth, E. D. Virchows Archiv. B Cell Pathol. 1988, 56, 1–4.
9. Oliveira, F. F. D.; Santos, D. C. B. D.; Lapis, A. A. M.; Correa, J. R.; Gomes, A. F.;
Gozzo, F. C.; Moreira, P. F.; de Oliveira, V. C.; Quina, F. H.; Neto, B. A. D. Bioorg.
Med. Chem. Lett. 2010, 20, 6001–6007.
10. Rodembusch, F. S.; Leusin, F. P.; Medina, L. F. C.; Brandelli, A.; Stefani, V.
Photochem. Photobiol. Sci. 2005, 4, 254–259.
11. Holler, M. G.; Campo, L. F.; Brandelli, A.; Stefani, V. J. Photochem. Photobiol. A
Chem. 2002, 149, 217–225.
12. Corbellini, V. A.; Scroferneker, M. L.; Carissimi, M.; Rodembusch, F. S.; Stefani,
V. J. Photochem. Photobiol. B Biol. 2010, 99, 126–132.
13. Seo, J.; Kim, S.; Park, S. Y. J. Am. Chem. Soc. 2004, 126, 11154–11155.
14. Rodembusch, F. S.; Campo, L. F.; Leusin, F. P.; Stefani, V. J. Lumin. 2007, 126,
728–734.
15. Whiteway, M.; Bachewich, C. Annu. Rev. Microbiol. 2007, 61, 529–553.
16. Nucci, M.; Queiroz-Telles, F.; Tobon, A. M.; Restrepo, A.; Colombo, A. L. Clin.
Infect. Dis. 2010, 51, 561–570.
17. Giusiano, G. E.; Mangiaterra, M.; Rojas, M. F.; Gómez, V. Mycoses 2004, 47, 300–
303.
18. Banerjee, U. Indian J. Med. Res. 2005, 121, 395–406.
19. Vilani-Moreno, F. R.; Belone, D. D. F.; Rosa, P. S. Med. Mycol. 2003, 41, 211–216.
20. Vale-Silva, L. A.; Buchta, V. Mycoses 2006, 49, 261–273.
21. Pina-Vaz, C.; Costa-Oliveira, S.; Rodrigues, A. G.; Salvador, A. J. Clin. Microbiol.
2004, 42, 906–908.
22. Thein, Z. M.; Samaranayake, Y. H.; Samaranayake, L. P. Arch. Oral Biol. 2007, 52,
761–767.
Acknowledgments
23. Essary, B. D.; Marshall, P. A. J. Microbiol. Meth. 2009, 78, 208–212.
24. Henry-Stanley, M. J.; Garni, R. M.; Well, C. L. J. Microbiol. Methods 2004, 59, 289–
292.
We are grateful for the financial support and scholarships from
the Brazilian agencies CNPq and FAPERGS. The authors also thank
Mariana Carissimi for the epifluorescence microscopy images.
25. Oh, K.-B. Int. J. Food Microbiol. 2002, 76, 47–57.
26. Warenda, A. J.; Konopka, J. B. Mol. Biol. Cell. 2002, 13, 2732–2746.
27. Molero, G.; Díez-Orejas, R.; Navarro-García, F.; Monteoliva, L.; Pla, J.; Gil, C.;
Sánchez-Pérez, M.; Nombela, C. Int. Microbiol. 1998, 1, 95–106.
28. Lyons, A. B. J. Immunol. Methods 2000, 243, 147–154.
29. Mhidia, R.; Vallin, A.; Ollivier, N.; Blanpain, A.; Shi, G. T.; Christiano, R.;
Johannes, L.; Melnyk, O. Bioconjugate Chem. 2010, 21, 219–228.
30. Dowlut, M.; Hall, D. G.; Hindsgaul, O. J. Org. Chem. 2005, 70, 9809–9813.
31. Kim, J. W.; Kotagiri, N.; Kim, J. H.; Deaton, R. Appl. Phys. Lett. 2006, 88, 213110.
Supplementary data
Supplementary data associated with this article can be found, in