H. M. Chawla et al. / Tetrahedron Letters 53 (2012) 2996–2999
2999
9
7
6
4
3
1
0
5
0
5
0
5
0
Supplementary data
References and notes
1.
2.
3.
Namor, A. F. D.; Cleverley, R. M.; Ormachea, M. L. Z. Chem. Rev. 1998, 98, 2495–
2526.
Gutsche, C. D. Calixarenes: An Introduction, 2nd ed.; Royal Society of Chemistry:
Cambridge, 2008.
(a) Wosnick, J. H.; Swager, T. M. Chem. Commun. 2004, 2744–2745; (b) Lee, J. Y.;
Sung, K. K.; Jung, J. H.; Kim, J. S. J. Org. Chem. 2005, 70, 1463–1466; (c) Inouye,
M.; Hashimoto, K. I.; Isagawa, K. J. Am. Chem. Soc. 1994, 116, 5517–5518; (d)
Bugler, J.; Engbersen, J. F. J.; Reinhoudt, D. N. J. Org. Chem. 1998, 63, 5339–5344;
-
-
15
30
(
e) Kim, J. S.; Quang, D. T. Chem. Rev. 2007, 107, 3780–3799.
Li+
4. (a)Applied Fluorescence in Chemistry, Biology, and Medicine; Rettig, W., Strehmel,
Na+
Ag+ Ni2+
Zn2+ Pb2+ Fe2+ Hg2+ Co2+
Mn2+
Cd2+
B., Schrader, S., Seifert, H., Eds.; Springer: Berlin, Heidelberg, New York, 1999;
(
b)Practical Fluorescence; Guilbault, G. G., Ed.; Marcel Dekker: New York, 1990.
Figure 4. Percentage decrease in the fluorescence intensity of the compound
5.
Pandey, S.; Azam, A.; Pandey, S.; Chawla, H. M. Org. Biomol. Chem. 2009, 7, 269–
279.
(
40
lM) upon addition of various metal ions in CHCl
3
:
CH
3
CN (1:4, v/v)
(k
excitation = 420 nm).
6. (a) Me’tivier, R.; Leray, I.; Valeur, B. Chem. Eur. J. 2004, 10, 4480–4490; (b) de
Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P.;
Rademacher, J. T.; Rice, T. E. Chem. Rev. 1997, 97, 1515–1566.
7
.
(a) Tamanini, E.; Katewa, A.; Sedger, L. M.; Todd, M. H.; Watkinson, M. Inorg.
Chem. 2009, 48, 319–324; (b) Pathak, R. K.; Ibrahim, S. M.; Rao, C. P. Tetrahedron
Lett. 2009, 50, 2730–2734.
To further analyze the selectivity of the synthesized receptor to
transition metal ions, competitive experiments with transition
metals in conjunction with Zn2 were performed (Supplementary
+
8. (a) Weng, Y.; Chen, Z.; Wang, F.; Xue, L.; Jiang, H. Anal. Chim. Acta 2009, 647,
215–218; (b) Du, J.; Fan, J.; Peng, X.; Li, H.; Sun, S. Sens. Actuators, B 2010, 144,
2
+
2+
2+
data, Fig. S4). The data clearly showed that Ni , Hg , Pb , and
337–341; (c) Ghosh, K.; Saha, I. Tetrahedron Lett. 2010, 51, 4995–4999; (d)
2
+
Fe have marginal effect; the fluorescence quenching observed
was slightly lower than that observed for the solution containing
Galceran, J.; Huidobro, C.; Companys, E.; Alberti, G. Talanta 2007, 71, 1795–
1803.
2
+
2+
2+
9. (a) Zhang, Y.; Guo, X.; Si, W.; Jia, L.; Qian, X. Org. Lett. 2008, 10, 473–476; (b)
Zhang, X.; Hayes, D.; Smith, S. J.; Friedle, S.; Lippard, S. J. J. Am. Chem. Soc. 2008,
Zn only. The presence of Mn with Zn resulted in reduction
in fluorescence intensity to an appreciable amount. However, the
extent of recognition through fluorescence quenching remains
1
30, 15788–15789; (c) Wang, H. H.; Gan, Q.; Wang, X. J.; Xue, L.; Liu, S. H.; Jiang,
H. Org. Lett. 2007, 9, 4995–4998.
unaltered in the presence of Co2 and Cd . These results highlight
+
2+
10. (a) Ngwendson, J. N.; Banerjee, A. Tetrahedron Lett. 2007, 48, 7316–7319; (b)
Zhu, L. N.; Gong, S. L.; Yang, C. L.; Qin, J. G. Chin. J. Chem. 2008, 26, 1424–1430;
2+
2+
2+
the much better selectivity for Zn over Cd and Co by 4.
(
c) Dessingou, J.; Joseph, R.; Rao, C. P. Tetrahedron Lett. 2005, 46, 7967–7971;
(d) Kim, J. S.; Shon, O. J.; Yang, S. H.; Kim, J. Y.; Kim, M. J. J. Org. Chem. 2002, 67,
514–6518; (e) Mashraqui, S. H.; Chandiramani, M. A.; Ghorpade, S. S.;
To elucidate the binding mode of Zn2 with compound 4, 1H
+
6
NMR titrations in CDCl
in the presence of increasing equivalents of Zn(ClO )
3
were performed. The NMR spectra of 4
resulted in
Estarellas, C.; Frontera, A. Chem. Lett. 2011, 40, 1163–1164; (f) Zapata, F.;
Caballero, A.; Espinosa, A.; Tarraga, A.; Molina, P. Org. Lett. 2007, 9, 2385–2388.
11. (a) Gutsche, C. D.; Iqbal, M. Org. Synth. 1990, 68, 234–237; (b) Gutsche, C. D.;
Iqbal, M.; Stewart, D. J. Org. Chem. 1986, 51, 742–745; (c) Chawla, H. M.; Sahu,
S. N.; Shrivastava, R. Tetrahedron Lett. 2007, 48, 6054–6058.
4 2
desheilding and broadening of the signals of the protons of anthra-
quinone unit as compared to those of free receptor. The addition of
2
+
5
equiv of Zn leads to the deshielding of anthraqunione protons
1
1
2. Kumar, S.; Luxami, V.; Kumar, A. Org. Lett. 2008, 10, 5549–5552.
3. Lakowicz, J. R. Principles of Fluorescence Spectroscopy, 3rd ed.; Kluwer
Academics/Plenum: New York, 2006.
by 0.05–0.15 ppm, respectively. The effect becomes much more
prominent when excess of Zn2 is present in solution. In the aro-
matic region, peaks corresponding to anthraquinone unit became
broad but the positions of protons corresponding to the calixarene
ring remained unaffected. A small shift in the UV–vis spectra upon
+
14. Fan, J.; Peng, X.; Wu, Y.; Lu, E.; Hou, J.; Zhang, H.; Zhang, R.; Fu, X. J. Lumin.
2005, 114, 125–130.
15. Ngwendson, J. N.; Amiot, C. L.; Srivastava, D. K.; Banerjee, A. Tetrahedron Lett.
2006, 47, 2327–2330.
2
+
16. Batista, R. M. F.; Oliveira, E.; Costa, S. P. G.; Lodeiro, C.; Raposo, M. M. M. Org.
Lett. 2007, 9, 3201–3204.
addition of Zn ruled out the involvement of NH proton of imidaz-
ole ring in binding Zn2 . These results suggest that the interaction
of the zinc ions takes place with the other donor nitrogen atoms of
+
17. Procedure for the synthesis of 4: To a solution of calix[4]arene (3) (0.102 mmol)
in CH CN:EtOH(7:3, v/v) was added 1,2 diaminoanthraquinone (0.22 mmol).
3
15,16
The reaction mixture was refluxed for 24 h. The solvent was evaporated to
dryness under reduced pressure and the residue was stirred with lead
tetraacetate (0.11 mmol) in acetic acid (10 ml) for overnight. After
completion of the reaction, product was filtered which was further purified
the imidazole ring as observed earlier.
2+
It has been known that Zn can adopt various geometries with
the coordination numbers ranging from two to six.1 Thus it can be
stipulated that it can adopt this geometry by interacting with the
nitrogen atom of imidazole ring.
6
3
by column chromatography and recrystallized from CHCl /MeOH.
18. Analytical data for 4: 68%; mp 286–288 °C (decomposed); UV (kmax, CHCl
3
):
À1
4
23 nm. IR (KBr pellet, cm ): 3438, 2960, 1664, 1292, 1259.HRMS (ESI-MS) m/
z: calcd 1409.6517, found 1409.6573; H NMR (300 MHz, CDCl , d in ppm):
3
1
In conclusion, we have developed anthraquinonoidal calix[4]ar-
ene based compound (41 ), which is capable of recognizing Zn
effectively with high selectivity without interference from Cd
and a host of other toxic metal ions studied.
7,18
2+
2
10.62 (s, 2H, NH, D O exchangeable), 8.11 (m, 4H), 7.94 (m, 4H), 7.82 (m, 6H),
2
+
7.65 (m, 4H), 7.08 (s, 4H), 6.99 (d, 4H), 6.92 (s, 4H), 4.35 (m, 8H), 4.13 (t, 4H),
13
3
.41 (d, 4H), 2.47 (m, 4H), 1.29 (s, 18H), 1.04 (s, 18H); C NMR (75 MHz, CDCl
d in ppm): 184.46, 161.24, 150.56, 141.68, 133.94, 128.3, 127.17, 114.88, 33.78,
1.62, 29.8.
3
,
3
Acknowledgement
R.S. and S.P. thank CSIR, India for fellowships.