3104
X. Liu et al.
SHORT PAPER
The protocol adopts an easily accessible reagent system 13C NMR (DMSO-d
affording extremely easy workup and high yields of prod-
): δ = 102.1 (C-1), 83.6 (C-4), 72.5 (C-2), 72.2
C-3), 72.0 (C-5), 45.0 (C-6).
6
(
+
uct, free from difficult-to-handle reagents and byproducts. HRMS (ESI): m/z [M + Na] calcd for C48
H72Cl
O32Na: 1463.1413;
8
found: 1463.1410.
Therefore, this preparation should find practical applica-
tions in glycochemistry.
Hexakis(6-bromo-6-deoxy)-α-cyclodextrin (2, n = 6)4
Yield: 2.6 g (95%); white solid; mp 262 °C.
2
0
All the reagents and solvents were commercial products and used as
received, unless otherwise noted. Cyclodextrins were recrystallized
[α]
1
D
+97.7 (c 1.0, DMF); R = 0.65.
f
H NMR (DMSO-d ): δ = 3.36 (br, 12 H, H-6), 3.62–3.67 (m, 12 H,
H-2, H-4), 3.81 (t, J = 8.4 Hz, 6 H, H-3), 3.99 (d, J = 10.0 Hz, 6 H,
H-5), 4.97 (s, 6 H, H-1), 5.90 (s, 6 H, OH-3), 6.04 (d, 6 H, OH-2).
6
from water and dried over CaCl under reduced pressure in a drying
2
pistol at 110 °C prior to use. DMF was distilled over CaH prior to
2
use. Thin-layer chromatography (TLC) was performed on precoat-
ed plates of silica gel HF254 (0.5 mm, Yantai, China), using
EtOAc–i-PrOH–25% aq NH Cl–H O (7:7:5:4) as eluent. Visualiza-
13
C NMR (DMSO-d ): δ = 102.1 (C-1), 84.6 (C-4), 72.3 (C-3), 72.0
C-2), 71.1 (C-5), 34.4 (C-6).
6
(
4
2
+
tion was effected by dipping the plates into 30% H SO in EtOH and
HRMS (ESI): m/z [M + Na] calcd for C H Br O Na: 1366.8003;
found: 1366.8006.
2
4
36 54
6
24
subsequent rapid heating. Optical rotations were measured with a
Jasco DIP-370 digital polarimeter, using a sodium lamp (λ = 589
1
13
Heptakis(6-bromo-6-deoxy)-β-cyclodextrin (2, n = 7)4
Yield: 3.1 g (97%); white solid; mp 248 °C.
α]D20 +90.9 (c 1.0, DMF); R = 0.55.
nm) at 20 °C. H and C NMR spectra were recorded in DMSO-d6
on a Varian Mercury Plus 400 MHz spectrometer, with references
at δ = 2.49 and 39.50 ppm (DMSO). High-resolution mass spectra
[
1
f
(HRMS) were recorded on a Bruker APEX II mass spectrometer us-
H NMR (DMSO-d ): δ = 3.33 (br, 14 H, H-6), 3.60–3.68 (m, 14 H,
H-2, H-4), 3.80 (t, J = 8.0 Hz, 7 H, H-3), 3.99 (d, J = 9.6 Hz, 7 H,
6
ing electrospray ionization (ESI).
H-5), 4.97 (s, 7 H, H-l), 5.92 (s, 7 H, OH-3), 6.03 (d, 7 H, OH-2).
Per(6-deoxy-6-halo)cyclodextrins 2; General Procedure
To a solution of freshly dried cyclodextrin 1 (2 mmol) in anhydrous
13
C NMR (DMSO-d ): δ = 102.1 (C-1), 84.6 (C-4), 72.3 (C-3), 72.0
6
®
DMF (40 mL) were added XtalFluor-E (2 equiv per glucose unit),
(C-2), 71.0 (C-5), 34.4 (C-6).
4-(1-pyrrolidino)pyridine (1 equiv per glucose unit) and an anhy-
+
HRMS (ESI): m/z [M + Na] calcd for C H Br O Na: 1590.7687;
drous tetraethylammonium halide (2 equiv per glucose unit) with
stirring at r.t. After the reaction was complete, as monitored by
TLC, DMF was removed under reduced pressure and the resulting
residue was poured into sat. Na CO solution (50 mL); the reaction
42 63
7
28
found: 1590.7690.
Octakis(6-bromo-6-deoxy)-γ-cyclodextrin (2, n = 8)4
Yield: 3.4 g (95%); white solid; mp 231 °C.
2
3
mixture was stirred for another 1 h. Addition of cold acetone (200
mL) gave a precipitate which was collected by filtration and ex-
[
α]D20 +113.8 (c 1.0, DMF); R = 0.48.
f
haustively washed with H O and acetone to afford 2 as a white or
1
2
H NMR (DMSO-d ): δ = 3.33 (br, 16 H, H-6), 3.60–3.68 (m, 16 H,
6
pale brown solid.
H-2, H-4), 3.82 (t, J = 8.0 Hz, 8 H, H-3), 3.99 (d, J = 10.4 Hz, 8 H,
H-5), 4.97 (s, 8 H, H-1), 5.89 (s, 8 H, OH-3), 6.02 (d, 8 H, OH-2).
Hexakis(6-chloro-6-deoxy)-α-cyclodextrin (2, n = 6)
13C NMR (DMSO-d
C-2), 71.0 (C-5), 34.9 (C-6).
): δ = 102.1 (C-1), 84.6 (C-4), 72.3 (C-3), 72.0
Yield: 2.0 g (91%); white solid; mp 213 °C.
6
(
[
α]D20 +108.3 (c 1.0, DMF); R = 0.43.
f
+
HRMS (ESI): m/z [M + Na] calcd for C H Br O Na: 1814.7371;
1
48 72
8
32
H NMR (DMSO-d ): δ = 3.20 (br, 12 H, H-6), 3.35–3.59 (m, 6 H,
6
found: 1814.7373.
H-5), 3.77–3.84 (m, 12 H, H-2, H-3), 4.06 (d, J = 9.6 Hz, 6 H, H-4),
.94 (d, J = 2.8 Hz, 6 H, H-1), 5.83 (s, 6 H, OH-2), 5.96 (m, 6 H,
OH-3).
4
Hexakis(6-deoxy-6-iodo)-α-cyclodextrin (2, n = 6)
Yield: 3.0 g (91%); pale brown solid; mp 240 °C.
13
C NMR (DMSO-d ): δ = 102.1 (C-1), 83.6 (C-4), 72.5 (C-2), 72.0
[α]D20 +84.3 (c 1.0, DMF); R = 0.92.
6
f
(C-3), 71.2 (C-5), 45.0 (C-6).
1
H NMR (DMSO-d ): δ = 3.29 (t, J = 8.8 Hz, 6 H, H-5), 3.43 (br, 12
6
+
HRMS (ESI): m/z [M + Na] calcd for C H Cl O Na: 1103.1034;
3
6
54
6
24
H, H-6), 3.57–3.67 (m, 12 H, H-2, H-3), 3.81 (d, J = 9.6 Hz, 6 H, H-
found: 1103.1036.
4
), 4.98 (d, J = 2.8 Hz, 6 H, H-1), 5.96 (s, 6 H, OH-3), 6.06 (d, 6 H,
OH-2).
13C NMR (DMSO-d
Heptakis(6-chloro-6-deoxy)-β-cyclodextrin (2, n = 7)
Yield: 2.4 g (94%); white solid; mp 239 °C.
6
): δ = 102.1 (C-1), 85.9 (C-4), 72.2 (C-2), 72.0
(C-3), 71.0 (C-5), 9.5 (C-6).
[
α]D20 +85.7 (c 1.0, DMF); R = 0.35.
f
+
HRMS (ESI): m/z [M + Na] calcd for C H I O Na: 1654.7171;
found: 1654.7170.
1
36 54 6 24
H NMR (DMSO-d ): δ = 3.35 (br, 14 H, H-6), 3.60–3.64 (m, 7 H,
6
H-5), 3.78–3.83 (m, 14 H, H-2, H-3), 4.07 (d, J = 9.6 Hz, 7 H, H-4),
.90 (d, J = 3.0 Hz, 7 H, H-1), 5.85 (s, 7 H, OH-2), 5.97–6.00 (m, 7
H, OH-3).
4
Heptakis(6-deoxy-6-iodo)-β-cyclodextrin (2, n = 7)
Yield: 3.5 g (90%); pale brown solid; mp 209 °C.
[α]D20 +65.2 (c 1.0, DMF); R = 0.85.
13
C NMR (DMSO-d ): δ = 102.1 (C-1), 83.6 (C-4), 72.5 (C-2), 72.0
6
f
(C-3), 71.2 (C-5), 45.0 (C-6).
1
H NMR (DMSO-d ): δ = 3.27 (t, J = 8.8 Hz, 7 H, H-5), 3.36 (br, 14
6
+
HRMS (ESI): m/z [M + Na] calcd for C H Cl O Na: 1283.1223;
4
2
63
7
28
H, H-6), 3.55–3.65 (m, 14 H, H-2, H-3), 3.79 (d, J = 9.6 Hz, 7 H, H-
found: 1283.1221.
4
), 4.96 (s, 7 H, H-1), 5.93 (s, 7 H, OH-3), 6.03 (d, 7 H, OH-2).
1
3
C NMR (DMSO-d ): δ = 102.1 (C-1), 85.9 (C-4), 72.2 (C-2), 71.9
Octakis(6-chloro-6-deoxy)-γ-cyclodextrin (2, n = 8)
Yield: 2.66 g (88%); white solid; mp 229 °C.
6
(C-3), 70.9 (C-5), 9.5 (C-6).
+
[
α]D20 +106.7 (c 1.0, DMF); R = 0.28.
HRMS (ESI): m/z [M + Na] calcd for C42H I O28Na: 1926.6716;
63 7
found: 1926.6720.
f
1
H NMR (DMSO-d ): δ = 3.35 (br, 16 H, H-6), 3.42–3.63 (m, 8 H,
6
H-5), 3.77–3.93 (m, 16 H, H-2, H-3), 4.06 (d, J = 10 Hz, 8 H, H-4),
.94 (s, 8 H, H-1), 5.70 (d, 8 H, OH-2), 5.84–5.99 (m, 8 H, OH-3).
4
Synthesis 2013, 45, 3103–3105
© Georg Thieme Verlag Stuttgart · New York