Please do not adjust margins
ChemComm
Page 4 of 4
DOI: 10.1039/C6CC01194B
COMMUNICATION
Journal Name
no Pd leaching during the reaction process. Again, the 21475078 and 21271120), 973 Program (Grant Nos.
comparison of XRPD patterns before and after reaction 2012CB821705 and 2013CB933800) and the Taishan Scholar’s
supported that 2 is stable, as further confirmed by its SEM Construction Project.
image after catalysis.
Table 3. Benzyl alcohol o
xidation-Knoevenagel condensation catalysed by 2.a
Notes and references
1
(a) N. Zhang, M.-Q. Yang, S. Liu, Y. Sun, Y.-J. Xu, Chem. Rev.,
2015, 115, 10307; (b) J. Shi, Chem. Rev., 2013, 113, 2139; (c)
J. Juan, A. Melero, R. van Grieken, G. Morales, Chem. Rev.,
2006, 106, 3790.
2
3
H. H. Wang, W. P. Kong, W. J. Zhu, L. X. Wang, S. Yang, F. J.
Liu, Catal. Commun., 2014, 50, 87-91.
Z. A. Qiao, P. F. Zhang, S. H. Chai, M. F. Chi, G. M. Veith, N. C.
Conversion
(%)b
Selectivity
entry
1
R
product
CN
CN
(%)b
Gallego, M. Kidder, S. Dai, J. Am. Chem. Soc., 2014, 136
11260.
,
H
99
65
58
62
99
4
5
6
7
8
9
T. Harada, S. Ikeda, F. Hashimoto, T. Sakata, K. Ikeue, T.
Torimoto, M. Matsumura, Langmuir, 2010, 26, 17720.
A. Prestianni, F. Ferrante, E. M. Sulman, D. Duca, J. Phys.
Chem. C, 2014, 118, 21006.
R. R. Dun, X. G. Wang, M. W. Tan, Z. Huang, X. M. Huang, W.
Z. Ding, X. G. Lu, ACS Catal., 2013, 3, 3063.
A. Tanaka, K. Hashimoto, H. Kominami, J. Am. Chem. Soc.,
2012, 134, 14526.
S. Sarina, H. Zhu, E. Jaatinen, Q. Xiao, H. Liu, J. Jia, C. Chen, J.
Zhao, J. Am. Chem. Soc., 2013, 135, 5793.
(a) T. Sun, Z. Zhang, J. Xiao, C. Chen, F. Xiao, S. Wang and Y.
CN
CN
CN
CN
CN
CN
2
3
4
Me
MeO
F
>99
>99
>99
Me
MeO
F
CN
CN
5
NO2
29
>99
O2N
aReaction conditions: catalyst (1 mol %), benzyl alcohol and substituted benzyl
alcohols (1.0 mmol), toluene (2 mL), 80°C, 30 h, in air; malononitrile (1.2 mmol), 8
h, r.t. b based on GC analysis (ESI).
Liu, Sci. Rep., 2013,
S. Xiao, H. Wang, S. Wang and Y. Liu, Sci. Rep., 2014,
3
, 2527; (b) Z. Zhang, F. Xiao, J. Xi, T. Sun,
4
, 4053;
(c) Z. Zhang, Y. Dong, L. Wang and S. Wang, Chem. Commun.,
2015, 51, 8357; (d) Z. Zhang, T. Sun, C. Chen, F. Xiao, Z. Gong
and S. Wang, ACS Appl. Mater. Interfaces, 2014, 6, 21035.
10 A. P. Wight, M. E. Davis, Chem. Rev., 2002, 102, 3589.
11 M. Yoon, R. Srirambalaji, K. Kim, Chem. Rev., 2012, 112, 1196.
12 H. L. Jiang, B. Liu, T. Akita, M. Haruta, H. Sakurai, Q. Xu, J. Am.
Chem. Soc., 2009, 131, 11302.
13 S. Hermes, M.-K. Schröter, R. Schmid, L. Khodeir, M. Muhler,
,
A. Tissler, R. A. Fischer, Angew. Chem., Int. Ed., 2005, 44
6237.
14 B. Yuan, Y. Pan, Y. W. Li, B. Yin, H. Jiang, Angew. Chem., Int.
Ed., 2010, 49, 4054.
Fig. 5 Left: simulated (UiO-68-NH2) and measured XRPD patterns of
after catalysis. Right: SEM image of after catalysis. The morphology of the
microcrystals of is well remained after two step reaction.
2 before and
2
2
15 M. S. El-Shall, V. Abdelsayed, A. E. R. S. Khder, H. M. A.
Hassan, H. M. El-Kaderi, T. E. Reich, J. Mater. Chem., 2009, 19
7625.
16 J. M. Falkowski, T. Sawano, T. Zhang, G. Tsun, Y. Chen, J. V.
Lockard, W. Lin, J. Am. Chem. Soc., 2014, 136, 5213.
17 H. Fei, S. M. Cohen, J. Am. Chem. Soc., 2015, 137, 2191.
18 A. Schaate, P. Roy, A. Godt, J. Lippke, F. Waltz, M. Wiebcke, P.
Behrens, Chem. Eur. J., 2011, 17, 6643.
19 J. Wang, M. Yang, W. Dong, Z. Jin, J. Tang, S. Fan, Y. Lu, G.
Wang, Catal. Sci. Technol., 2016, 6, 161.
20 Huang, X. Q.; Tang, S. H.; Yang, J.; Tan, Y. M.; Zheng, N. F. J.
Am. Chem. Soc., 2011, 133, 15946.
The scope of the bifunctional catalytic system was
investigated by performing the oxidation-condensation
reaction of other various substituted benzyl alcohols. Table 3
summarized the results of these reactions. Compared to
benzyl alcohol, we found that benzyl alcohols with either
electron-donating or electron-withdrawing groups gave lower
overall conversions, which is resulted from the lower
conversion rates of the first oxidation step. The oxidation
conversions for CH3-, CH3O-, F- and NO2-substituted substrates
are 66, 60, 65, 29 % (ESI), respectively. However, the following
,
condensation step for the obtained aromatic aldehydes is a 21 X. Li, Z. Guo, C. Xiao, T. W. Goh, D. Tesfagaber, W. Huang,
ACS Catal., 2014, 4, 3490.
nearly quantitative catalytic process.
In summary, a new Pd NPs loaded Pd(0)@UiO-68-AP was
22 Fernandez, M. I.; Tojo, G. Oxidation of Alcohols to Aldehydes
and Ketones: A Guide to Current Common Practice, Springer,
New York, 2006.
prepared based on
a chelating-directed post-synthetic
approach. The obtained Pd NPs embedded Pd(0)@UiO-68-AP
can be a highly active bifunctional heterogeneous catalyst to
successively facilitate benzyl alcohol oxidation- condensation
reaction under relative mild conditions. The results herein
might provide an alternative way to access to versatile family
of the multifunctional catalysts of this type for a broad scope
of organic transformations in practical application. Further
work on exploring new catalytic reactions based on such
NPs@MOF catalytic systems is currently underway.
23 F. Freeman, Chem. Rev., 1980, 80, 329.
24 (a) E. L. Margelefsky, A. Bendjériou, R. K. Zeidan, V. Dufaud,
M. E. Davis, J. Am. Chem. Soc., 2008, 130, 13442; (b) M. J.
Climent, A. Corma, S. Iborra, L. Martí, ACS Catal., 2015, 5,
157.
We are grateful for financial support from NSFC (Grant Nos.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins