Please d oC hn eo mt Ca do mj u ms t margins
Page 4 of 5
COMMUNICATION
Journal Name
Based on the above mechanistic experiments, our previous
studies10 and literature reports, a possible reaction pathway
on this radical dual-difunctionalization of two different alkenes
is depicted in Scheme 3, with the reaction of pivaldehyde (1a),
methyl acrylate (2a) and styrene (3a) as an example. First,
Notes and references
11
DOI: 10.1039/C9CC05764A
1
Z. Rappoport, The Chemistry of Peroxides; Wiley and Sons:
New York, 2006.
2
3
M. Klussmann, Chem. Eur. J., 2018, 24, 4480.
For selected reviews, see: (a) X. Wang and A. Studer, Acc.
Chem. Res., 2017, 50, 1712; (b) X.-W. Lan, N.-X. Wang and Y.
Xing, Eur. J. Org. Chem., 2017, 5821; (c) H. Yi, G. Zhang, H.
Wang, Z. Huang, J. Wang, A. K. Singh and A. Lei, Chem. Rev.,
2017, 117, 9016.
II
reduction of TBHP by Co -complex produces tert-butoxy radical
t
III
II
(
2
BuO•) and Co (OH)X (while in the absence of Co , the
homolytic cleavage of TBHP occurs at elevated temperature).
Subsequent intermolecular hydrogen atom abstraction of the
4
5
6
(a) H.-Y. Zhang, C. Ge, J. Zhao and Y. Zhang; Org. Lett., 2017,
1
9, 5260; (b) E. Shi, J. Liu, C. Liu, Y. Shao, H. Wang, Y. Lv, M. Ji,
t
pivaldehyde (1a) by BuO• and spontaneous decarbonylation
X. Bao and X. Wan, J. Org. Chem., 2016, 81, 5878.
generates tert-butyl radical, which is a nucleophilic carbon
radical thus preferentially adds to the electron-deficient and
less-hindered -carbon of methyl acrylate (2a) to produce
radical intermediate (I-a). In turn, this new formed carbon
radical (I-a) becomes electrophilic due to its -electron
withdrawing group (an ester group), so it favors the subsequent
addition to electron-rich and less-hindered -carbon of styrene
(a) S. Lu, T. Tian, R. Xu and Z. Li, Tetrahedron Lett., 2018, 59,
2064; (b) Y. Lan, X.-H. Chang, P. Fan, C.-C. Shan, Z.-B. Liu, T.-P.
Loh and Y.-H. Xu, ACS Catal., 2017, 7, 7120.
(a) W. Li, Y. Li, K. Liu and Z. Li, J. Am. Chem. Soc., 2011, 133,
1
2
0756; (b) K. Liu, Y. Li, X. Zheng, W. Liu and Z. Li, Tetrahedron,
012, 68, 10333; (c) Z. Zong, S. Lu, W. Wang and Z. Li
Tetrahedron Lett., 2015, 56, 6719; (d) J.-K. Cheng, L. Shen, L.-
H. Wu, X.-H. Hu and T.-P. Loh, Chem Commun., 2017, 53,
12830; (e) Y. Yao, Z. Wang and B. Wang, Org. Chem. Front.,
2018, 5, 2501; (f) C.-S. Wu, R.-X Liu, D.-Y. Ma, C.-P. Luo and L.
Yang, Org. Lett., 2019, 21, 6117.
(
3a) selectively, to provide a metastable benzyl radical (II-a),
t
which would further be trapped by the BuOO∙ (or its precursor)
via radical-radical coupling to yield the peroxide 4a’. On the
7
8
(a) T. Taniguchi, H. Zaimoku and H. Ishibashi, Chem. Eur. J.,
III
other hand, reaction of Co (OH)X
2
with TBHP provides the
2
011, 17, 4307; (b) Y.-H. Chen, M. Lee, Y.-Z. Lin and D. Leow,
t
II
BuOO• (and water) to regenerate the Co complex.
Chem. Asian J., 2015, 10, 1618; (c) S. Kindt, H. Jasch and M. R.
Heinrich, Chem. Eur. J., 2014, 20, 6251.
Me
O
O
(a) B. Schweitzer-Chaput, J. Demaerel, H. Engler and M.
Klussmann, Angew. Chem. Int. Ed., 2014, 53, 8737; (b) S. Lu, L.
Qi and Z. Li, Asian. J. Org. Chem., 2017, 6, 313; (c) J.-K. Cheng
and T.-P. Loh, J. Am. Chem. Soc., 2015, 137, 42; (d) J. Jiang, J.
Liu, L. Yang, Y. Shao, J. Cheng, X. Bao and X. Wan, Chem.
Commun., 2015, 51, 14728; (e) A. Banerjee, S. K. Santra, N.
Khatun, W. Ali and B. K. Patel., Chem. Commun., 2015, 51,
15422; (f) A. Banerjee, S. K. Santra, A. Mishra, N. Khatun and
B. K. Patel, Org. Biomol. Chem., 2015, 13, 1307; (g) Y. Lan, C.
Yang, Y.-H. Xu and T.-P. Loh, Org. Chem. Front., 2017, 4, 1411.
Y. Chen, Y. Chen, S. Lu and Z. Li, Org. Chem. Front., 2018, 5,
DBU
t
OO Bu
II
Co X2
4a
tBuOOH
tBu
Ph
4
a'
tBuOO
H2O
+
CO2Me
CoIII(OH)X2
t
tBu
tBuOOH
+ BuO
Ph
O
II-a
tBu
H
1a
Ph
a
tBuOH
3
O
tBu
tBu
CO
CO2Me
I-a
tBu
9
1
CO2Me 2a
9
72.
Scheme 3. Proposed mechanism
0 (a) R. -J. Tang, Q. He and L. Yang, Chem. Commun., 2015, 51,
5925; (b) R. -J. Tang, L. Kang and L. Yang, Adv. Synth. Catal.,
In conclusion, we have developed a convenient salen-Co
promoted four-component radical-dual-difunctionalization and
alkylative peroxidation of two different alkenes with aldehydes
and TBHP to provide ketones via one-pot procedure. Radical
difunctionalization of alkenes was famous for its ability to
synthesize complex molecules from structurally simple and
readily available alkenes; this radical-dual-difunctionalization of
two different alkenes has amplified this advantage by realizing
the difunctionalization and ordered-assembly of two different
alkenes, to incorporate multi-functionalities and elongated alkyl
chain into the products, with TBHP playing a triple role of radical
initiator, terminal oxidant and radical coupling partner. The
application of abundant aliphatic aldehydes as alkyl source,
convenient operation for carbon radical generation, readily
available styrene analogs/electron-deficient alkenes and
versatile synthetic utilities of the cascade reaction products,
would render this radical-dual-difunctionalization attractive for
organic synthesis and medicinal chemistry.
2
015, 357, 2055; (c) L. Yang, W. Lu, W. Zhou and F. Zhang,
Green Chem., 2016, 18, 2941; (d) Y.-X. Li, Q.-Q. Wang and L.
Yang, Org. Biomol. Chem., 2017, 15, 1338; (e) W.-Y. Li, Q.-Q.
Wang and L. Yang, Org. Biomol. Chem., 2017, 15, 9987; (f) Y.
Peng, Y.-Y. Jiang, X.-J. Du, D.-Y. Ma and L. Yang, Org. Chem.
Front., 2019, 6, 3065; (g) R.-X. Gao, X.-Q. Luan, Z.-Y. Xie, L.
Yang and Y. Pei, Org. Biomol. Chem., 2019, 17, 5262; (h) Y.-X.
Li, W.-Y. Li, Y.-Y. Jiang and L. Yang, Tetrahedron Lett., 2018, 59,
2
2
934; (i) C.-S. Wu, R. Li, Q.-Q. Wang and L. Yang, Green Chem.,
019, 21, 269.
1
1 For decarbonylative coupling of aldehydes from other groups:
(a) J. Lin, R.-J. Song, M. Hu and J.-H. Li, Chem. Rec., 2019, 19,
4
4
40; (b) R.-J. Song, Y. Liu, Y.-X. Xie and J.-H. Li, Synthesis, 2015;
7, 1195; (c) W.-T. Wei, X.-H. Yang, H. B. Li and J.-H. Li, Adv.
Synth. Catal., 2015, 357, 59; (d) X.-H. Ouyang, R.-J. Song, B. Liu
and J.-H. Li, Adv. Synth. Catal., 2016, 358, 1903; (e) Y. Li, G.-H.
Pan, M. Hu, B. Liu, R.-J. Song and J.-H. Li, Chem. Sci., 2016, 7,
7050; (f) H.-X. Zou, Y. Li, X.-H. Yang, J. Xiang and J.-H. Li, J. Org.
Chem., 2018, 83, 8581; (g) Y. Li and J.-H. Li, Org. Lett. 2018, 20,
5
323.
1
2 (a) K. Miura, M. Tojino, N. Fujisawa, A. Hosomi and I. Ryu,
Angew. Chem. Int. Ed., 2004, 43, 2423; (b) P. Du, H. Li, Y. Wang,
J. Cheng and X. Wan, Org. Lett., 2014, 16, 6350; (c) E.
Godineau and Y. Landais, Chem. Eur. J., 2009, 15, 3044.
Acknowledgements
This work was supported by the National Natural Science
Foundation of China (21772168) and the project of innovation 13 H. Fischer, Chem. Rev., 2001, 101, 3581.
team of the Ministry of Education (IRT_17R90).
14 N. Kornblum and H. E. DeLaMare, J. Am. Chem. Soc., 1951, 73,
80.
8
4
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins