H.-E. Wang et al. / Journal of Alloys and Compounds 517 (2012) 186–191
191
140
120
100
80
Acknowledgments
This work was financially supported by Provincial Natural Sci-
ence Foundation of Hunan (No. 09JJ3024) and the opening subject
of State Key Laboratory of Powder Metallurgy (No. 2008112032).
(c)
(a)
(b)
References
[1] J.M. Tarascon, E. Wang, F.K. Shokoohi, W.R. Mckinnon, S. Colson, J. Electrochem.
Soc. 138 (1991) 2859–2864.
[2] J.M. Tarascon, M. Armand, Nature 414 (2001) 359–367.
[3] C.H. Lu, S.W. Lin, J. Power Sources 97–98 (2001) 458–460.
[4] J.H. Choy, D.H. Kim, C.W. Kwon, S.J. Hwang, Y.I. Kim, J. Power Sources 77 (1999)
1–11.
[5] K. Matsuda, I. Taniguchi, J. Power Sources 132 (2004) 156–160.
[6] H. Huang, C.H. Chen, R.C. Perego, E.M. Kelder, L. Chen, J. Schoonman, W.J. Wey-
danz, D.W. Nielsen, Solid State Ionics 127 (2000) 31–42.
[7] C. Wan, Y. Nuli, J. Zhuang, Z. Jiang, Mater. Lett. 56 (2002) 357–363.
[8] S.H. Ye, J.Y. Lv, X.P. Gao, F. Wu, D.Y. Song, Electrochim. Acta 49 (2004)
1623–1628.
60
0
10
20
30
40
50
Cycling number
Fig. 7. Cycling properties of the as-prepared samples: (a) LiMn2O4 octahedrons, (b)
LiMn2O4 microspheres, and (c) LiCoO2-coated LiMn2O4 microspheres.
[9] X. Qiu, X. Sun, W. Shen, N. Chen, Solid State Ionics 93 (1997) 335–339.
[10] K.T. Hwang, W.S. Um, H.S. Lee, J.K. Song, K.W. Chung, J. Power Sources 74 (1998)
169–174.
[11] C.H. Lu, S.K. Saha, Mater. Sci. Eng. B: Solid 79 (2001) 247–250.
[12] W. Liu, K. Kowal, G.C. Farrington, J. Electrochem. Soc. 143 (1996) 3590–3596.
[13] H.M. Wu, J.P. Tu, Y.F. Yuan, X.T. Chen, J.Y. Xiang, X.B. Zhao, G.S. Cao, J. Power
Sources 161 (2006) 1260–1263.
[14] C.H. Jiang, S.X. Dou, H.K. Liu, M. Ichihara, H.S. Zhou, J. Power Sources 172 (2007)
410–415.
[15] M.M. Thackeray, Prog. Solid State Chem. 25 (1997) 1–71.
[16] G.G. Amatucci, C.N. Schmutz, A. Blyr, C. Sigala, A.S. Gozdz, D. Larcher, J.M. Taras-
con, J. Power Sources 69 (1997) 11–25.
[17] Y. Xia, M. Yoshio, J. Power Sources 66 (1997) 129–133.
[18] M. Hosoya, H. Ikuta, M. Wakihara, Solid State Ionics 111 (1998) 153–159.
[19] Y.K. Sun, D.W. Kim, Y.M. Choi, J. Power Sources 79 (1999) 231–237.
[20] G.T.K. Fey, C.Z. Lu, T.P. Kumar, Mater. Chem. Phys. 80 (2003) 309–318.
[21] K. Dokko, S. Horikoshi, T. Itoh, M. Nishizawa, M. Mohamedi, I. Uchida, J. Power
Sources 90 (2000) 109–115.
of Mn ions into the electrolyte during the electrochemical reactions.
After surface modification, as shown in Fig. 7c, the LiCoO2-coated
LiMn2O4 electrode shows even superior cycle characteristics.
The discharge capacity of the LiCoO2-coated LiMn2O4 retains
117.2 mAh g−1, with a capacity retention of 94.1%. This result indi-
cates that the surface coating of appropriate amount of LiCoO2 can
both increase the discharge capacity and improve the cycle prop-
erties of the spinel LiMn2O4.
4. Conclusions
Spinel LiMn2O4 materials with different morphologies have
been synthesized by two different methods with pre-prepared
spherical MnO2 particles as precursors. The LiMn2O4 sample
obtained by the hydrothermal reaction mainly consists of large
quantities of octahedral particles with a size less than 1 m
while the LiMn2O4 product prepared by the solid-state reaction
is composed of microspheres with a size ranging from 1 to 8 m.
The morphology difference should be ascribed to the different
reaction processes involved under different reaction conditions.
Moreover, LiCoO2 was coated on the surface of LiMn2O4 micro-
spheres by a sol–gel route. Electrochemical measurements indicate
that the as-synthesized LiMn2O4 octahedrons have a higher ini-
tial discharge capacity (128 mAh g−1) compared to that of the
as-prepared LiMn2O4 microspheres (120.6 mAh g−1) and LiCoO2-
coated LiMn2O4 (124.5 mAh g−1). However, LiMn2O4 microspheres
and LiCoO2-coated LiMn2O4 microspheres display much superior
capacity retentions than that of LiMn2O4 octahedrons. After cycling
for 50 times, the capacity retentions of the LiMn2O4 octahedrons,
LiMn2O4 microspheres, and LiCoO2-coated LiMn2O4 microspheres
are 89.4%, 93.3%, 94.1%, respectively. The synthetic method for the
preparation of LiMn2O4 microspheres by the solid-state reaction
presented here can be potentially developed to synthesize other
Li–Mn–O oxides and metal-doped spinel LiMn2O4 with fine electro-
chemical properties by controlling appropriate stoichiometry ratio
of the initial precursors and optimizing experimental parameters.
[22] R. Singhal, S.R. Das, M.S. Tomar, O. Ovideo, S. Nieto, R.E. Melgarejo, R.S. Katiyar,
J. Power Sources 164 (2007) 857–861.
[23] S.C. Park, Y.M. Kim, Y.M. Kang, K.T. Kim, P.S. Lee, J.Y. Lee, J. Power Sources 103
(2001) 86–92.
[24] Z. Liu, H. Wang, L. Fang, J.Y. Lee, L.M. Gan, J. Power Sources 104 (2002) 101–107.
[25] J. Tu, X.B. Zhao, G.S. Cao, D.G. Zhuang, T.J. Zhu, J.P. Tu, Eletrochim. Acta 51 (2006)
6456–6462.
[26] L. Yu, X. Qiu, J. Xi, W. Zhu, L. Chen, Eletrochim. Acta 51 (2006) 6406–6411.
[27] H. Liu, C. Cheng, Q. Zong, K. Zhang, Mater. Chem. Phys. 101 (2007) 276–279.
[28] J. Tu, X.B. Zhao, J. Xie, G.S. Cao, D.G. Zhuang, T.J. Zhu, J.P. Tu, J. Alloys Compd.
432 (2007) 313–317.
[29] D. Liu, Z. He, X. Liu, Mater. Lett. 61 (2007) 4703–4706.
[30] H.W. Ha, N.J. Yun, K. Kim, Electrochim. Acta 52 (2007) 3236–3241.
[31] D.Q. Liu, X.Q. Liu, Z.Z. He, Mater. Chem. Phys. 105 (2007) 362–366.
[32] S. Lim, J. Cho, Electrochem. Commun. 10 (2008) 1478–1481.
[33] H. S¸ ahan, H. Göktepe, S¸ . Patat, A. Ülgen, Solid State Ionics 178 (2008) 1837–1842.
[34] X.M. He, J.J. Li, Y. Cai, Y. Wang, J. Ying, C. Jiang, C. Wan, J. Solid State Electrochem.
9 (2005) 438–444.
[35] S.W. Oh, S.H. Park, K. Amine, Y.K. Sun, J. Power Sources 160 (2006) 558–562.
[36] M.H. Kim, H.S. Shin, D. Shin, Y.K. Sun, J. Power Sources 159 (2006) 1328–1333.
[37] I. Taniguchi, N. Fukuda, M. Konarova, Powder Technol. 181 (2008) 228–236.
[38] H. Fang, L. Li, Y. Yang, G. Yan, G. Li, J. Power Sources 184 (2008) 494–497.
[39] D.K. Kim, P. Muralidharan, H.W. Lee, R. Ruffo, Y. Yang, C.K. Chan, H. Peng, R.A.
Huggins, Y. Cui, Nano Lett. 8 (2008) 3948–3952.
[40] H. Wang, D. Qian, Z. Lu, Y. Li, R. Cheng, Y. Li, J. Phys. Chem. Solids 68 (2007)
1422–1427.
[41] H.E. Wang, Z. Lu, D. Qian, S. Fang, J. Zhang, J. Alloys Compd. 466 (2008) 250–257.
[42] Z.Y. Yuan, Z. Zhang, G. Du, T.Z. Ren, B.L. Su, Chem. Phys. Lett. 378 (2003) 349–353.
[43] M. Wei, Y. Konishi, H. Zhou, H. Sugihara, H. Arakawa, Nanotechnology 16 (2005)
245–249.
[44] G. Li, L. Jiang, H. Pang, H. Peng, Mater. Lett. 61 (2007) 3319–3322.