M. Gaber et al. / Spectrochimica Acta Part A 62 (2005) 694–702
701
the intermediate compounds obtained after the first stage of
References
decomposition. On comparing the activation energy of the
first stage of decomposition of Cu(II) complex with the sec-
ond stage of Co(II) and Ni(II) complexes, Cu(II) complex
shows remarkably higher value. This may be due to the stereo
structure of the complexes and the electronic configuration
of the metal ion.
The ꢁS values for all complexes were found to be nega-
tive. This indicates that the activated complex is more ordered
than the reactants [27].
[
1] T. Katami, T. Hayakawa, Analyst 109 (1984) 731;
S. Balzamo, V. Carunchio, R. Galvani, A. Messina, Inorg. Chem.
Acta 97 (1985) 13;
B. Kuban, L. Sommer, Coll. Czechoslov. Chem. Commun. 53 (1988)
3040;
A. Amin, Anal. Lett. 32 (1999) 1575;
*
R.M. Issa, M. Gaber, A.M. Khedr, Egypt J. Anal. Chem. 10 (2001)
23;
E.Y. Hashem, Spectrochim. Acta A 58 (2002) 1401;
E.K. Paleologos, M.I. Prodromidis, D.L. Giokas, A.C. Pappas, M.I.
Karayannis, Anal. Chim. Acta 467 (2002) 205.
[
[
[
2] D. Datta, A. Chakravorty, Inorg. Chem. 22 (1983) 1085;
R.A. Krause, K. Krause, Inorg. Chem. 23 (1984) 2195;
M.R. Mahmoud, S.A. Elgyar, A.M. Hammam, S.A. Ibrahim, Mon-
tash. Chem. 117 (1986) 313;
4
. Conclusion
The electronic spectrum of the pyrimidine azodye (L) was
M. Kakoti, S. Choudhury, A.K. Deb, S. Goswami, Polyhedron 12
(1993) 783;
recorded in different solvents and in universal buffer solu-
tions containing different percentages of methanol. The pKa
of the azodye was determined at different temperatures. The
pKa values increase with the rise of the temperature and
decrease of the percentage of methanol. The various opti-
mum conditions for complex formation were detected. The
spectrophotometric titration of Co(II), Ni(II) and Cu(II) with
EDTA in presence of the pyrimidine azodye indicated that
the azodye can be used as an indicator. The fluorescence of
the azodye was quenched in presence of Co(II), Ni(II) and
Cu(II) ions. The calculated Stern–Volmer second order rate
constant decreases with increasing the ionic radius of the
metal ion. The solid complexes were prepared and character-
ized on the basis of elemental analysis, molar conductance,
magnetic moments, spectral and thermal studies. The pro-
posed chemical structures of the metal chelates suggest the
octahedral geometry for Co(II) and Ni(II) chelates and square
planar for Cu(II) chelate. From all of the above observations,
the structure of the complexes is given as follows:
B.K. Santra, G.K. Lahiri, J. Chem. Soc., Dalton Trans. (1997) 1883;
T.M. Misra, D. Das, C. Sinha, P. Ghosh, C.K. Pal, Inorg. Chem. 37
(1998) 1672.
3] H.A. El-Dessouki, R.M. Issa, M.M. Moustafa, Spectrochim. Acta A
45 (1989) 775;
H. Zhan, H. Tian, Dyes Pigments 40 (1998) 37;
A.D. Towns, Dyes Pigments 42 (1999) 3;
A. Lycka, Z. Vrba, M. Vrba, Dyes Pigments 47 (2000) 45;
K. Singh, S. Singh, J.A. Taylor, Dyes Pigments 54 (2002) 189;
R.M. Issa, S.A. El-Daly, N.A. Elwakiel, Spectrochim. Acta A 59
(2003) 723;
N.M. Rageh, Spectrochim. Acta A 60 (2004) 103.
4] P.K. Santra, D. Das, T.K. Misra, R. Roy, C. Sinha, S.M. Peng, Poly-
hedron 18 (1999) 1909;
P.K. Santra, T.K. Misra, D. Das, C. Sinha, A.M.Z. Slawin, J.D.
Woollins, Polyhedron 18 (1999) 2869;
S. Wang, S. Shen, H. Xu, Dyes Pigments 44 (2000) 195;
R. Roy, P.K. Santra, D. Das, C. Sinha, Synth. React. Inorg. Met.
Org. Chem. 30 (2000) 1975;
G.G. Mohamed, F.A. Nour El-Dien, N.E. El-Gamel, J. Therm. Anal.
Cal. 67 (2002) 135;
H.B. Hassib, S.A. Abdel-Latif, Spectrochim. Acta A 59 (2003) 2425;
J. Dinda, S. Jasimuddin, G. Mostafa, C.H. Hung, C. Sinha, Polyhe-
dron 23 (2004) 793.
[5] R.H. Holm, G.W. Everett, A. Chakravorty, Prog. Inorg. Chem. 7
(1966) 83.
[
[
[
[
6] L. Gati, L. Szalay, Acta. Phys. Chem. 5 (1957) 87.
7] P. Suppan, J. Chem. Soc. (A) (1968) 3125.
8] E.M. Kosower, J. Am. Chem. Soc. 78 (1956) 5700.
9] E.G. Brame, Applied Spectroscopy Reviews, vol. 8, No. 13, Marcel
Dekker, New York, 1974, p. 194.
[
10] I.M. Issa, R.M. Issa, M.S. El-Ezaby, Y.Z. Ahmed, Z. Physik. Chem.
Leipzig) 242 (1969) 169;
I.M. Issa, R.M. Issa, M.S. El-Ezaby, Y.Z. Ahmed, Z. Physik. Chem.
Leipzig) 250 (1972) 161;
R.M. Issa, J.Y. Maghrabi, Z. Physik. Chem. (Leipzig) 253 (1974)
53.
(
(
3
[
[
11] G.H. Ayers, B.D. Narang, Anal. Chim. Acta 24 (1961) 241.
12] E.B. Sandell, Calorimetric Determination of Traces of Metals, 3rd
ed., Interscience, New York, 1959.
[
[
13] A. Ringbom, Z. Anal. Chem. 115 (1939) 332.
14] A.M. Braun, M.T. Maurette, E. Oliveros, Photochemical Technology,
Wiely, New York, 1991, p. 41.
[
[
15] W.J. Greary, Coord. Chem. Rev. 7 (1971) 81.
16] B. Beeccroft, M.J.M. Campell, R. Grazeskowiak, J. Inorg. Nucl.
Chem. 65 (1974) 360.
[17] M.A. David, Metal–Ligand and Related Vibrations, Adward Arnold
Ltd., London, 1967.