SYNTHESIS AND CHARACTERIZATION OF SOME METAL COMPLEXES
Metal complexes 1–3 (general procedure). A
00958970802345831.
1921
solution of 1 mmol of the corresponding transition
metal acetate [0.248 g of Ni(OAc) ·4H O, 0.199 g of
7. Uçan, S.Y., Uçan, M., and Mercimek, B., Synth. React.
Inorg. Met.-Org. Nano-Met. Chem., 2005, vol. 35, no. 5,
p. 417. doi 10.1081/SIM-200059233.
2
2
Cu(OAc) ·H O, or 0.219 g of Zn(OAc) ·2H O] in
2
2
2
2
8
9
. Raman, N., Jeyamurugan, R., Subbulakshmi, M.,
Boominathan, R., and Yuvarajan, C. R., Chem Pap.,
2
0 mL of ethanol was added to a solution of 1 mmol
(
0.470 g) of Schiff base L in 30 mL of ethanol. The
2
0
010, vol. 64, no. 3, p. 318. doi 10.2478/s11696-010-
003-0.
mixture was stirred for 2 h at 60°C. After cooling, the
precipitate was filtered off, washed with cold ethanol,
and dried under vacuum over CaCl2.
. El-Sherif, A.A. and Eldebss, T.M.A., Spectrochim.
Acta, Part A, 2011, vol. 79, no. 5, p. 1803. doi
10.1016/j.saa.2011.05.062.
–
1
Nickel complex 1. IR spectrum, ν, cm : 1625–
1
1
600 (C=N), 920 (N–O), 480 (M–N), 430 (M–O).
10. Taha, Z.A., Ajlouni, A.M., Al-Hassan, K.A., Hijazi, A.K.,
and Faiq, A.B., Spectrochim. Acta, Part A, 2011,
vol. 81, no. 1, p. 317. DOI:10.1016/j.saa.2011.06.018.
–
1
Copper complex 2. IR spectrum, ν, cm : 1620–
590 (C=N), 925 (N–O), 520 (M–N), 470 (M–O).
1
1. Singh, K., Barwa, M.S., and Tyagi, P., Eur. J. Med.
Chem., 2006, vol. 41, no. 1, p. 147. doi 10.1016/
j.ejmech.2005.06.006.
–
1
Zinc complex 3. IR spectrum, ν, cm : 1610–1585
1
(
C=N), 915 (N–O), 490 (M–N), 440 (M–O). H NMR
spectrum (DMSO–d ), δ, ppm: 8.68 s (2H, CH=N),
12. Al-Ne’aimi, M.M., and Al-Khuder, M.M., Spectrochim.
Acta, Part A, 2013, vol. 105, p. 365. doi 10.1016/
j.saa.2012.10.046.
6
8
.09–7.29 m (18H, Harom).
ACKNOWLEDGMENTS
The authors thank the Research Foundation of the
1
3. Eltayeb, M.A.Z. and Sulfab, Y., Polyhedron, 2007,
vol. 26 no.1, p. 1. doi 10.1016/j.poly.2006.04.019.
1
4. Keypour, H., Rahpeyma, N., Arzhangi, P., Rezaeivala, M.,
Elerman, Y., Buyukgungor, O., and Valencia, L.,
Polyhedron, 2010, vol. 29, p. 1144. doi 10.1016/
j.poly.2009.12.005.
Nigde University (BAP) for financial support of this
work (P.N. FEB 2007–05).
1
1
1
5. Kılıc, A., Tas, E., Gümgüm, B., and Yılmaz, İ., Transi-
tion Met. Chem., 2006, vol. 31, p. 645. doi 10.1007/
s11243-006-0043-z.
6. Naeimi, N., Safari, J., and Heidarnezhad, A., Dyes
Pigm., 2007, vol. 73, p. 251. doi 10.1016/
j.dyepig.2005.12.009.
REFERENCES
1
. Chakravorty, A., Coord. Chem. Rev., 1974, vol. 13,
no. 1, p. 1. doi 10.1016/S0010-8545(00)80250-7.
2
. Akagi, F., Michihiro, Y., Nakao, Y., Matsumoto, K.,
Sato, T., and Mori, W., Inorg. Chim. Acta, 2004,
vol. 357, no. 3, p. 684. doi 10.1016/j.ica.2003.08.022.
. Achiwawanich, S., Duangthongyou, T., Kitiphaisalnont, P.,
and Siripaisarnpipat, S., J. Mol. Struct., 2014, vol. 1072,
p. 149. doi 10.1016/j.molstruc.2014.04.090.
. Dede, B., Karipcin, F., Arabalı, F., and Cengiz, M.,
Chem. Pap., 2010, vol. 64, no. 1, p. 25. doi 10.2478/
s11696-009-0095-6.
. Uçan, S.Y. and Mercimek, B., Synth. React. Inorg. Met.-
Org. Nano-Met. Chem., 2005, vol. 35, no. 3, p. 197.
doi 10.1081/SIM-200037249.
7. Tümer, M., Deligönül, N., Gölcü, A., Akgün, E., Dolaz, M.,
Demirelli, H., and Dığrak, M., Transition Met. Chem.,
3
4
5
6
2
6
006, vol. 31, no. 1, p. 1. doi 10.1007/s11243-005-
249-7.
1
8. Uçan, S.Y., Russ. J. Gen. Chem., 2014, vol. 84, no. 9,
p. 1819. doi 10.1134/S1070363214090308.
19. Yıldırım, S., Pekacar, A. İ., and Uçan, M., Synth. React.
Inorg. Met.-Org. Nano-Met. Chem., 2003, vol. 33, no. 5,
p. 873. doi 10.1081/SIM-120021654.
20. Yıldırım, S., Pekacar, A.İ., and Uçan, M., Synth. React.
Inorg. Met.-Org. Nano-Met. Chem., 2003, vol. 33, no. 7,
p. 1. doi 10.1081/SIM-120023496.
. Çolak, A.T., Irez, G., Mutlu, H., et al., J. Coord. Chem.,
2
009, vol. 62, no. 6, p. 1005. doi 10.1080/
RUSSIAN JOURNAL OF GENERAL CHEMISTRY Vol. 86 No. 8 2016