SIVASANKAR
References
1 A. Karipides, J. Ault and A. Thomas Read, Inorg. Chem.,
16 (1977) 3299.
2 B. N. Sivasankar and S. Govindarajan, Z. Naturforsch.,
49b (1994) 950.
3 B. N. Sivasankar and S. Govindarajan, Synth. React.
Inorg. Met.-Org. Chem., 24 (1994) 1573.
4 B. N. Sivasankar and S. Govindarajan, Thermochim. Acta,
244 (1994) 235.
5 S. Govindarajan, S. V. Nasrin Banu, N. Saravanan and
B. N. Sivasankar, Proc. Indian Acad. Sci. (Chem. Sci.),
107 (1995) 559.
6 B. N. Sivasankar and S. Govindarajan, Synth. React.
Inorg. Met.-Org. Chem., 25 (1995) 31.
Fig. 11 X-ray powder diffraction pattern of NiO obtained
from a – Ni(mal)(N2H4)2, b – Ni(suc)(N2H4)2 and
c – Ni(ita)(N2H4)2
7 K. Kuppusamy, B. N. Sivasankar and S. Govindarajan,
Thermochim. Acta, 274 (1996) 139.
8 B. N. Sivasankar and S. Govindarajan, J. Thermal Anal.,
48 (1997) 1401.
Conclusions
9 J. R. Shamila and B. N. Sivasankar, J. Therm. Anal. Cal.,
78 (2004) 933.
Mono- and bis-hydrazine complexes have been pre-
pared in basic conditions using excess hydrazine hy-
drate.
10 B. N. Sivasankar and J. R. Shamila, J. Therm. Anal. Cal.,
73 (2003) 271.
11 S. Yasodhai and S. Govindarajan, Synth. React. Inorg.
Met.-Org. Chem., 29 (1999) 919.
The magnetic moments and electronic spectral
data indicate the high-spin octahedral nature of the
metal ions.
12 B. N. Sivasankar and S. Govindarajan, J. Thermal Anal.,
46 (1996) 117.
Infrared spectra show that each carboxylate
group bound to metal ion in a bidentate fashion and
hydrazine present as bidentate bridged ligand.
Thermal degradation clearly shows that, gener-
ally these complexes decompose in single step or
multi-step to give the respective metal oxide as the fi-
nal residue and respective mono-hydrazine complex
or metal carboxylate as intermediate.
The thermal degradation of these complexes in
nitrogen atmosphere also gives the respective metal
oxide as the final residue.
Based on the analytical, spectral and thermal stud-
ies the structures given in Figs 2–4 have been tentatively
assigned for the mono-hydrazine metal malonates,
bis-hydrazine metal malonates and bis-hydrazine metal
succinates/itaconates, respectively.
However, in the case of bis-hydrazine zinc
itaconate dihydrate though thermal degradation sug-
gest the coordination of water molecules, spectral
studies are not in accordance with this. Hence, at this
stage it is not possible to give convincing structure for
this complex.
Further, the succinic acid forms solid solution
with fumeric acid, they are expected to have similar
structure [24]. Hence succinate ion is expected to co-
ordinate as a trans dianion bridge. The similar struc-
ture is also assigned for itaconate complexes. Based
on these facts the three dimensional polymeric struc-
ture (Fig. 4) has been proposed for these complexes.
13 A. I. Vogel, A text Book of Quantitative Inorganic Analysis,
4th Edition, Longman, London 1986.
14 S. Yasodhai and S. Govindarajan, Synth. React. Inorg.
Met.-Org. Chem., 30 (2000) 745.
15 A. B. P. Lever, Inorganic Electronic Spectroscopy,
2nd Edition, Elsevier, Amsterdam 1984.
16 K. Nakamoto, Infrared and Raman spectra of Inorganic
and Coordination Compounds, 3rd Edition,
Wiley/Interscience, New York 1978.
17 A. Braibanti, F. Dallavalle, M. A. Pellinghelli and
E. Leporati, Inorg. Chem., 7 (1986) 1430.
18 B. N. Sivasankar and S. Govindarajan, Mater. Res. Bull.,
31 (1996) 47.
19 N. Saravanan, B. N. Sivasankar, S. Govindarajan and
K. K. Mohammed Yusuff, Synth. React. Inorg. Met.-Org.
Chem., 24 (1994) 703.
20 D. Gajpathy, S. Govindarajan, K. C. Patil and H. Manohar,
Polyhedron, 4 (1983) 865.
21 T. Prem Kumar and S. Govindarajan, Thermochim. Acta,
386 (2002) 35.
22 K. Saravanan and S. Govindarajan, Proc. Indian Acad. Sci.
(Chem. Sci.), 114 (2002) 25.
23 S. Yasodhai and S. Govindarajan, J. Therm. Anal. Cal.,
67 (2002) 679.
24 I. L. Finar, Organic Chemistry, 5th Edition, ELPS,
Longman, London 1988, p. 166.
Received: October 19, 2005
Accepted: November 18, 2005
OnlineFirst: June 27, 2006
DOI: 10.1007/s10973-005-7403-3
392
J. Therm. Anal. Cal., 86, 2006