840
S.M. Abdallah et al. / Spectrochimica Acta Part A 73 (2009) 833–840
showed the least MIC (65 g ml−1), followed by Ni(II) (80 g ml−1),
Co(II) (140 g ml−1) and H2L (150 g ml−1). The complexation with
against the tested fungal species.
References
[1] Y. Elerman, M. Kabak, A. Elmali, Z. Naturforsch. B 57 (2002) 651.
[2] M.M.H. Khalil, M.M. Aboaly, R.M. Ramadan, Spectrochim. Acta (Part) 61 (2005)
157.
Non-substituted o-aminophenol is known as Questiomycin
B antibiotic with specific antifungal (antimycobacterial) activity
[29]. Cr(III) complex can employed as an agent to render the
microbe non-invasive [30]. In evaluating the antibacterial activity
of Cr(III) and Mn(II) complex, we can note that they also demon-
strated a low antibacterial activity toward E. coli (Gram-negative),
the MIC was 120 and 130 g ml−1, respectively (Table 9). The
estimated antibacterial activity results against S. aureus (Gram-
positive) show that the MIC was 100 and 105 g ml−1, respectively.
Gram-positive bacteria are more sensitive to the tested metal
complexes. The complexation with Cr(III) and Mn(II) ions can
somewhat increase the activities of H2L against Gram-positive
more than Gram-negative bacteria. It is well known that the bac-
terial cell wall is a good target for antimicrobial agents, metal
complexes among them. In general, we have revealed a signif-
icant difference of MIC for the H2L and its Cr(III) and Mn(II)
complex under study against Gram-positive and Gram-negative
bacteria. The latter finding is accounted for by the fact that the
first barrier capable of limiting antimicrobial activities is the outer
membrane of Gram-negative bacteria. This fact is widely known
and referred to as ‘intrinsic resistance’ of Gram-negative bacte-
ria.
Schiff bases are important class of compounds in medici-
including antibacterial activity [5–7] whereas in some cases,
metal complexes are less toxic than the parent drugs [31].
Cr(III), [Cr(salen)(OH2)2]+, has an inhibitory action on the
growth and invasive and pathogenic potential of S. Dysenteriae
[30]. Thus, our investigation showed that some metal com-
plexes may be more active than the parent Schiff base and
cefepime standard and they may be of interest in design-
ing new drugs. The tested H2L and its metal complexes
showed promising antifungal activity and weak antibacterial
activity.
[3] N. Chantarasiri, V. Ruangpornvisuti, N. Muangsin, H. Detsen, T. Mananunsap, C.
Batiya, N. Chaichit, J. Mol. Struct. 701 (2004) 93.
[4] A.A. Soliman, G.G. Mohamed, J. Thermochim. Acta 421 (2004) 151.
[5] A.A.A. Abu-Hussen, J. Coord. Chem. 59 (2006) 157.
[6] M.S. Karthikeyan, D.J. Parsad, B. Poojary, K.S. Bhat, B.S. Holla, N.S. Kumari, Bioorg.
Med. Chem. 14 (2006) 7482–7489.
[7] P. Panneerselvam, R.R. Nair, G. Vijayalakshmi, E.H. Subramanian, S.K. Sridhar,
Eur. J. Med. Chem. 40 (2005) 225.
[8] O.M. Walsh, M.J. Meegan, R.M. Prendergast, T.A. Nakib, Eur. J. Med. Chem. 31
(1996) 989.
[9] (a) L.A. Finney, T.V. O’Halloran, Science 300 (2003) 931;
(b) D. Mustafi, A. Bekesi, B.G. Vertessy, M.W. Makinen, Proc. Natl. Acad. Sci. (USA)
100 (2003) 5670.
[10] K.A. Marr, R.A. Carter, F. Crippa, A. Wald, L. Corey, Clin. Infect. Dis. 34 (2002)909.
[11] F. Barchiesi, E. Spreghini, A. Santinelli, A.W. Fothergill, S. Fallani, E. Manso, E.
Pisa, D. Giannini, A. Novelli, M.I. Cassetta, T. Mazzei, M.G. Rinaldi, G. Scalise,
Antimicrob. Agents Chemother. 49 (2005) 5133.
[12] J. Dotis, E. Roilides, Int. J. Infect. Dis. 8 (2004) 103.
[13] X. Bosch, Lancet 353 (1999) 131.
[14] G.G. Mohamed, Spectrochim. Acta (Part A) 64 (2006) 188.
[15] G.G. Mohamed, M.M. Omar, Ahmed M.M. Hindy, Turkish J. Chem. 30 (2006) 361.
[16] G.G. Mohamed, C.M. Sharaby, Spectrochim. Acta (Part A) 66 (2007) 949.
[17] M.M. Omar, G.G. Mohamed, M.M. Ahmed, J. Hindy, Thermal Anal. Cal. 86 (2006)
315.
[18] D.H. Lorone, Medically important fungi. A guide to identification, 3rd ed., ASM
Press, Washington, D.C., 1995.
[19] S. Arikan, P.M. Lozano-Chiu, J.H. Rex, Agents Chemother. 45 (2002) 327.
[20] National Committee for Clinical Laboratory Standards. Performance standard
for antimicrobial disk susceptibility testing. NCCLS publication no. M2-A6.
National Committee for Clinical Laboratory Standards, Wayne, Pa. (1997).
[21] G.N. Pershin (Ed.), Methods of the Experimental Chemotherapy, Meditsina,
Moskwa, 1971, p. 103.
[22] M.M. Omar, G.G. Mohamed, Spectrochim. Acta (Part A) 61 (2005) 929.
[23] F.A. Cotton, G. Wilkinson, C.A. Murillo, M. Bochmann, Advanced Inorganic
Chemistry, Sixth ed., Wiley, New York, 1999.
[24] M.M. Moustafa, J. Thermal Anal. Cal. 50 (1997) 463.
[25] M.F.R. Fouda, M.M. Abd-el-Zaher, M.M.E. Shadofa, F.A. El Saied, M.I. Ayad, A.S.
El Tabl, Trans. Met. Chem. 33 (2008) 219.
[26] S. Chandra, U. Kuar, Spectrochim. Acta (Part A) 61 (2005) 219.
[27] K.B. Gudasi, S.A. Patil, R.S. Vadavi, R.V. Shenoy, Trans. Met. Chem. 31 (2006) 586.
[28] A.W. Coats, J.P. Redfern, Nature 20 (1964) 68.
[29] K. Anzai, K. Isono, K. Okuma, S. Suzuki, J. Antibiot. (Ser. A) 13 (1960) 125.
[30] H.Y. Shrivastava, S.N. Devaraj, B.U. Nair, J. Inorg. Biochem. 98 (2004) 387.
[31] S.J. Lippard, J.M. Berg (Eds.), Principles of Bioinorganic Chemistry, University
Science Books, Mill Valley, CA, 1994.