4946 Inorg. Chem., Vol. 48, No. 11, 2009
Mahata et al.
Table 4. One-Dimensional Water Structures Observed in Other Host-Guest Systems
smallest water
cluster, (H O)
total size of repeating
unit, (H O)
serial no.
1
formula
2
n
2
n
ref
[Gd
,2-benzenedicarboxylic acid; 2,5-H
[TACD] 3H O (TACD = 1,4,7,10-tetraazacyclododecane)
[Cd(phen)(Hpppn)].4H O (phen = 1,10-phenanthroline; pppn =
-phosphonopropionate)
2
(H
2
O)
2
Ni(H
2
O)
2
(1,2-bdc)
2
(2,5-pydc)
2
] 8H
2
O (1,2-H
2
bdc =
n = 2, 4
n = 12
present
compound
26a
3
1
2
pydc = 2,5-pyridinedicarboxylic acid)
2
3
2
n = 4
n = 6
n = 10
n = 14
3
2
26b
3
I
II
4
5
[Cu Cu (pydc)
2
2
(bpe) ] 7H O (pydc = pyridine-2,6-dicarboxylate;
bpe = trans-1,2-bis(4-pyridyl)ethylene)
[Cu(mal) (picH) ] 5H O (mal = malonate dianion; picH = protonated
2
2
n = 4, 10
n = 4
n = 24
n = 7
26c
26d
3
2
2
2
3
2
-amino-4-picoline)
6
7
8
[C20
[APDO] 4H O (APDO = trans-4,4 -azopyridine dioxide)
H
25SnN
3
O
2
] 2.5H
2
O
n = 6
n = 5
n = 6
n = 11
n = 8
n = 12
26e
26f
26g
3
0
2
3
[(enH
en = ethylenediamine)
[Cd (bpa) Cl ] 6H
[Fe(bipy)
[Cu(2-mi)
Water molecules are disordered.
2
)
3
{Ni(AEDP)
2
}] 6H
2
O (AEDPH
4
= 1-aminoethylenediphosphonic acid;
3
a
9
0
2
2
4
2
O [bpa = N,N -bis(picolinamide)azine]
n = 4
n = 6
n = 4
n = 7
n = 11
n = 7
26h
26i
26j
3
2 2 2
(CN) ] 2.5H O
a
1
1
0
1
3
b
2
2
(male)] 3H O (2-mi = 2-methylimidazole; male = maleate)
3
a
b
Hydrogen atoms of the water molecules were not assigned.
2
6
27
set of 6-31+G(d,P), using the Gaussian 03 software
and related sytems. For calculations of the one-dimen-
sional water clusters formed by the connectivity between
smaller cyclic water clusters, we first calculated the stabi-
lization energy of the small water cluster (fragment) and
then the total stabilization energy due to connectivity
between the small water cluster units. We have performed
all of the calculations at the B3LYP level with a basis
2
8
package. For 1, on basis of the crystal structure geo-
metry, we have made an evaluation of the stability of the
water tetramers [O(100) ꢀ 2 and O(300) ꢀ 2] using the
single-point energy calculation without any symmetry
constraints. The stabilization energy was found to be -
14.57 kcal/mol for the tetramer. Similarly, for the dimer
[
of calculations, we have considered the (H O) unit
O(200) and O(400)], it was -2.89 kcal/mol. In the next set
2
12
(
25) (a) Cheruzel, L. E.; Pometun, M. S.; Cecil, M. R.; Mashuta, M. S.;
Wittebort, R. J.; Buchanan, R. M. Angew. Chem., Int. Ed. 2003, 42, 5452. (b)
Rather, B.; Zaworotko, M. J. Chem. Commun. 2003, 830. (c) Wakahara, A.;
Ishida, T. Chem. Lett. 2004, 33, 354. (d) Neogi, S.; Bharadwaj, P. K. Inorg.
Chem. 2005, 816. (e) Kim, H. J.; Jo, H. J.; Kim, J.; Kim, S. Y.; Kim, D.; Kim,
K. CrystEngComm 2005, 7, 417. (f) Fei, Z. F.; Zhao, D. B.; Geldbach, T. J.;
Scopelliti, R.; Dyson, P. J.; Antonijevic, S.; Bodenhausen, G. Angew. Chem.,
Int. Ed. 2005, 44, 4720. (g) Zhang, X. L.; Ye, B. H.; Chen, X. M. Cryst.
Growth Des. 2005, 5, 1609. (h) Birkedal, H.; Schwarzenbach, D.; Pattison, P.
Angew. Chem., Int. Ed. 2002, 41, 754. (i) Sreenivasulu, B.; Vittal, J. J. Angew.
Chem., Int. Ed. 2004, 43, 5769. (j) Saha, B. K.; Nangia, A. Chem. Commun.
(dodecameric unit) formed by the connectivity between
the two tetrameric units and the two dimeric units, which
is the basic repeating unit (the total number of hydrogen
bonds in this unit is 10) of the water ladder (Figure 3a).
The calculated stabilization energy for the (H O) unit
2
12
was found to be -47.82 kcal/mol. In Figure 3b, we show
the plots of the electron densities and electrostatic
potentials for the tetrameric and dodecameric units. As
can be seen, there appears to be considerable electronic
delocalization in the water cluster units due to the hydro-
gen-bond interactions.
2
005, 3024. (k) Lau, B. Y.; Jiang, F. L.; Yuan, D. Q.; Wu, B. L.; Hong, M. C.
Eur. J. Inorg. Chem. 2005, 3214.
26) (a) Pal, S.; Sankaran, N. B.; Samanta, A. Angew. Chem., Int. Ed. 2003,
(
4
5
2, 1741. (b) Zhang, X. M.; Fang, R. Q.; Wu, H. S. Cryst. Growth Des. 2005,
, 1335. (c) Hu, N. H.; Li, Z. G.; Xu, J. W.; Jia, H. Q.; Niu, J. J. Cryst. Growth
In Figure 4, we have pictorially represented the various
water clusters considered for comparison with the water
ladders observed in the present compound. One-dimen-
sional water clusters, formed by the connectivity between
a tetramer and a monomer, have been observed in the
organic host system, [TACD] 3H O (TACD = 1,4,7,10-
Des. 2007, 7, 15. (d) Choudhury, S. R.; Jana, A. D.; Colacio, E.; Lee, H. M.;
Mostafa, G.; Mukhopadhyay, S. Cryst. Growth Des. 2007, 7, 212. (e)
Rolando, L. G.; Berenice, M. D. M.; Victor, B.; Herbert, H.; Hiram, I. B.;
Luis, S. Z. R. Chem. Commun. 2005, 44, 5527. (f) Ma, B. Q.; Sun, H. L.; Gao,
S. Chem. Commun. 2004, 2220. (g) Li, M.; Chen, S.; Xiang, J.; He, H.; Yuan,
L.; Sun, J. Cryst. Growth Des. 2006, 6, 1250. (h) Ye, B. H.; Sun, A. P.; Wu, T.
F.; Weng, Y. Q.; Chen, X. M. Eur. J. Inorg. Chem. 2005, 1230. (i) Ma, B. Q.;
Sun, H. L.; Gao, S. Eur. J. Inorg. Chem. 2005, 3902. (j) Jin, Y.; Che, Y.;
Batten, S. R.; Chen, P.; Zheng, J. Eur. J. Inorg. Chem. 2007, 1925.
3
2
2
6a
tetraazacyclododecane; Figure 4a).
Our theoretical
evaluation gave an energy of -15.26 kcal/mol for the
water tetramer and an overall stabilization energy of -
49.36 kcal/mol for the (H O) unit.
(
(
27) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
28) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,
2
10
M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T., Jr.; Kudin, K. N.;
Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.;
Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.;
Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa,
J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li,
X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.;
Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.;
Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.;
Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A.
D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari,
K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.;
Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.;
Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng,
C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.;
Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, revision
B.05; Gaussian, Inc.: Pittsburgh, PA, 2003.
One-dimensional water tapes formed by the connectiv-
ity between a hexamer and a monomer have been
observed in the channels of a metal phosphonocarbox-
ylate network, [Cd(phen)(Hpppn)] 4H O (phen = 1,10-
3
2
phenanthroline and pppn = 3-phosphonopropionate;
Figure 4b). Here, the calculations reveal a stabilization
26b
energy of -26.06 kcal/mol for the hexamer and an
overall stabilization energy of -140.81 kcal/mol for the
(H O) unit.
2
14
Water chains with tetrameric and decameric clusters
have been observed in [Cu Cu (pydc) (bpe) ] 7H O
I
2
II
2
2
3
2
[pydc = pyridine-2,6-dicarboxylate and bpe = trans-
1,2-bis(4-pyridyl)ethylene; Figure 4c]. Our calculations
2
6c