Table 1 MICs (minimum inhibitory concentrations) (mg mLÀ1) of NiO nanotubes, NiO nanoflowers, and commercial NiO
Minimum inhibitory concentration/mg mLÀ1
Gram positive
Gram negative
B. subtilis
S. aureus
S. faecalis
P. aeruginosa
E. cloacae
Samples
NiO nanotubes
NiO nanoflowers
Commercial NiO
6.25
450
450
6.25
50
450
25
450
450
6.25
50
450
25
50
450
materials, stainless steel materials. We believe that research
of the electrochemical capacitance and magnetic properties of
NiO nanotubes are useful, which may be expected to lead to
their use in a number of applications that involve magnetic
drug delivery, MR imaging, nanoscale encapsulation, and
so forth.
This work is supported by the National Natural Science
Foundation of China (Grant No. 20671049, 20721002 and
50772047), the National Basic Research Program of China
(Grant No. 2007CB925102), the Natural Science Foundation
of Jiangsu Province (Grant No. BK2007129), and Program for
New Century Excellent Talents in University.
Fig. 3 (a) Cyclic voltammetric (CV) curves at different scan rates
within a potential window of 0 to 0.6 V vs. Ag/AgCl; (b) discharge
curves in the potential range from 0 to 0.5 V at different galvanostatic
currents.
Notes and references
1 S. W. Kim, M. Kim, W. Y. Lee and T. Hyeon, J. Am. Chem. Soc.,
2002, 124, 7642.
2 Y. G. Sun, B. Mayers and Y. N. Xia, Adv. Mater., 2003, 15, 7.
3 Y. Yin, R. M. Rioux, X. K. Erdonmez, S. Hughes, G. A. Somorjai
and A. P. Alivisatos, Science, 2004, 304, 711.
Meanwhile, these results suggest that there exist strong inter-
actions among the nanoparticles of NiO nanotubes, resulting
in a high saturation magnetization (Ms).
This method not only provides us with NiO nanotubes with
multi-functionalities, but is also an effective and facile route
for other one-dimensional nanomaterials. Besides metal oxide,
Ni/C nanocomposites can be obtained when using N2 as
an inert atmosphere to calcine Ni(dmg)2 nanorods with
preservation of their morphology. The experimental details
are described in the ESIw. Fig. SI6 displays its XRD pattern,
SEM and TEM images, suggesting that one-dimensional Ni/C
nanostructure has also been successfully synthesized.
¨
4 F. Caruso, R. A. Caruso and H. Mohwald, Science, 1998, 282,
1111.
5 N. Du, H. Zhang, B. D. Chen, X. Y. Ma and D. R. Yang, Chem.
Commun., 2008, 3028.
6 M. Nath and C. N. R. Rao, J. Am. Chem. Soc., 2001, 123,
4841.
7 X. Wang, X. M. Sun, D. P. Yu, B. S. Zou and Y. D. Li, Adv.
Mater., 2003, 15, 1442.
8 X. X. Li, F. Y. Cheng, B. Guo and J. Chen, J. Phys. Chem. B, 2005,
109, 14017.
9 S. H. Zhang, Z. X. Xie, Z. Y. Jiang, X. Xu, J. Xiang, R. B. Huang
and L. S. Zheng, Chem. Commun., 2004, 1106.
In summary, dimethylglyoxime,
a common organic
precipitant, has been employed for the synthesis of NiO
nanotubes. The obtained NiO nanotubes show great anti-
bacterial activities, electrochemical capacitance, and magnetic
properties. The potential application of the synthesized NiO
nanotubes in antibacterial application is promising, which
may prevent bacteria colonization on prostheses, dental
10 X. F. Song and L. Gao, J. Phys. Chem. C, 2008, 112, 15299.
11 J. Park, E. Kang, S. U. Son, H. M. Park, M. K. Lee, J. Kim,
K. W. Kim, H. J. Noh, J. H. Park, C. J. Bae, J. G. Park and
T. Hyeon, Adv. Mater., 2005, 17, 429.
12 X. Wang, L. Li, Y. G. Zhang, S. T. Wang, Z. D. Zhang, L. F. Fei
and Y. T. Qian, Cryst. Growth Des., 2006, 6, 2163.
13 J. X. Zhu, Z. Gui, Y. Y. Ding, Z. Z Wang, Y. Hu and M. Q. Zou,
J. Phys. Chem. C, 2007, 111, 5622.
14 G. Malandrino, L. M. S. Perdicaro, I. L. Fragala, R. Lo Nigro,
M. Losurdo and G. Bruno, J. Phys. Chem. C, 2007, 111, 3211.
15 C. S. Shi, G. Q. Wang, N. Q. Zhao, X. W. Du and J. J. Li,
Chem. Phys. Lett., 2008, 454, 75.
16 S. Manna, A. K. Deb, J. Jagannath and S. K. De, J. Phys. Chem.
C, 2008, 112, 10659.
17 L. Tschugaeff, Ber. Dtsch. Chem. Ges., 1905, 38, 2520.
18 K. Yamamoto, T. Kamata, Y. Yoshida, K. Yase, F. Mizukami
and T. Ohta, Adv. Mater., 1998, 10, 1018.
19 J. Meletiadis, J. F. Meis, J. W. Mouton, J. P. Donnelly and
P. E. Verweij, J. Clin. Microbiol., 2000, 38, 2949.
20 H. Pang, F. Gao and Q. Y. Lu, Chem. Commun., 2009, 1076.
21 T. Yuranova, A. G. Rincon, C. Pulgarin, D. Laub, N. Xantopoulos,
H. J. Mathieu and J. Kiwi, J. Photochem. Photobiol., A, 2006,
181, 363.
Fig. 4 Magnetization (M) versus magnetic field (H) of the NiO
nanotubes taken at 1.8 K and 300 K: (a) from À1000 Oe to 1000 Oe;
(b) À10 000 Oe to 10 000 Oe.
22 W. Sugimoto, H. Iwata, Y. Yasunaga, Y. Murakami and
Y. Takasu, Angew. Chem., Int. Ed., 2003, 42, 4092.
ꢀc
This journal is The Royal Society of Chemistry 2009
7544 | Chem. Commun., 2009, 7542–7544